نتایج جستجو برای: الگوریتم adaboost

تعداد نتایج: 24794  

Journal: :Pattern Recognition Letters 2010
Zhaofeng He Tieniu Tan Zhenan Sun

Several important issues involved in Adaboost-cascade learning still remain open problems. In this work, several novel ideas are proposed for improved Adaboost-cascade object detection. The most important one is the novel Topology Oriented Adaboost (TOBoost) algorithm. TOBoost immediately minimizes the classification error of each selected feature, and thus enables the final detector to be more...

2003
Jiaming Li Geoff Poulton Ying Guo Rong-yu Qiao

For face recognition, face feature selection is an important step. Better features should result in better performance. This paper describes a robust face recognition algorithm using multiple face region features selected by the AdaBoost algorithm. In conventional face recognition algorithms, the face region is dealt with as a whole. In this paper we show that dividing a face into a number of s...

2015
Victor Uc Cetina Carlos Brito-Loeza Hugo Ruiz-Piña

The Chagas disease is a potentially life-threatening illness caused by the protozoan parasite, Trypanosoma cruzi. Visual detection of such parasite through microscopic inspection is a tedious and time-consuming task. In this paper, we provide an AdaBoost learning solution to the task of Chagas parasite detection in blood images. We give details of the algorithm and our experimental setup. With ...

Journal: :CoRR 2017
Kaidong Wang Yao Wang Qian Zhao Deyu Meng Zongben Xu

It is known that Boosting can be interpreted as a gradient descent technique to minimize an underlying loss function. Specifically, the underlying loss being minimized by the traditional AdaBoost is the exponential loss, which is proved to be very sensitive to random noise/outliers. Therefore, several Boosting algorithms, e.g., LogitBoost and SavageBoost, have been proposed to improve the robus...

2013
Lev V. Utkin Andrea Wiencierz

This paper is about a generalization of ensemble methods for regression which are based on variants of the basic AdaBoost algorithm. The generalization of these regression methods consists in restricting the unit simplex for the weights of the instances to a smaller set of weighting probabilities. The proposed algorithms cover the standard AdaBoost-based regression algorithms and standard regre...

Journal: :Soft Comput. 2011
Ammar W. Mohemmed Mark Johnston Mengjie Zhang

This paper proposes a new approach to using particle swarm optimisation (PSO) within an AdaBoost framework for object detection. Instead of using exhaustive search for finding good features to be used for constructing weak classifiers in AdaBoost, we propose two methods based on PSO. The first uses PSO to evolve and select good features only and the weak classifiers use a simple decision stump....

2002
Gunnar Rätsch Manfred K. Warmuth

AdaBoost produces a linear combination of weak hypotheses. It has been observed that the generalization error of the algorithm continues to improve even after all examples are classified correctly by the current linear combination, i.e. by a hyperplane in feature space spanned by the weak hypotheses. The improvement is attributed to the experimental observation that the distances (margins) of t...

2013
Kusma Kumari Cheepurupalli Raja Rajeswari Konduri

Reverberation suppression is a crucial problem in speech communications. The intelligibility of the speech signal will be degraded by strong reverberation. This paper presents a novel signal processing scheme that offers an improved solution in reducing the effect of interference caused due to reverberation. It is based on the combination of empirical mode decomposition (EMD) and adaptive boost...

2014
Hideki Yaginuma

Recently GPS data is used in a lot of studies to automatically reconstruct travel patterns for trip survey. The aim is to minimize the use of questionnaire surveys and travel diaries so as to reduce their negative effects. In this paper data acquired from GPS and accelerometer embedded in smart phones is utilized to predict the mode of transportation used by the phone carrier. For prediction, S...

2012
S. Vural H. Yamauchi

Current systems for face recognition techniques often use either SVM or Adaboost techniques for face detection part and use PCA for face recognition part. In this paper, we offer a novel method for not only a powerful face detection system based on Six-segment-filters (SSR) and Adaboost learning algorithms but also for a face recognition system. A new exclusive face detection algorithm has been...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید