We prove universality at the edge for rescaled correlation functions of Wigner random matrices in the limit n → +∞. As a corollary, we show that, after proper rescaling, the 1st, 2nd, 3rd, etc. eigenvalues of Wigner random hermitian (or real symmetric) matrix weakly converge to the distributions established by Tracy and Widom in G.U.E. (G.O.E.) cases.