نتایج جستجو برای: two dimensional legendre polynomials
تعداد نتایج: 2696750 فیلتر نتایج به سال:
Generalized Hall–Littlewood polynomials (Macdonald spherical functions) and generalized Kostka–Foulkes polynomials (q-weight multiplicities) arise in many places in combinatorics, representation theory, geometry, and mathematical physics. This paper attempts to organize the different definitions of these objects and prove the fundamental combinatorial results from “scratch”, in a presentation w...
We consider the space Pn of orthogonal polynomials of degree n on the unit disc for a general radially symmetricweight function.We show that there exists a single orthogonal polynomialwhose rotations through the angles j n+1 , j = 0, 1, . . . , n forms an orthonormal basis for Pn, and compute all such polynomials explicitly. This generalises the orthonormal basis of Logan and Shepp for the Lege...
Many interesting properties of polynomials are closely related to the geometry of their Newton polytopes. We analyze the coercivity on R of multivariate polynomials f ∈ R[x] in terms of their Newton polytopes. In fact, we introduce the broad class of so-called gem regular polynomials and characterize their coercivity via conditions imposed on the vertex set of their Newton polytopes. These cond...
Biological cells can be treated as an inhomogeneous particle. In addition to biomaterials, inhomogeneous particles are also important in more traditional colloidal science. By using two energy methods that are based on Legendre polynomials and Green’s function, respectively, we investigate the interaction between biological cells or colloidal particles in the presence of an external electric fi...
Although general methods led me to a complete solution, I soon saw that the result is obtained faster when the general procedure is left, and when one follows the path suggested by the particular problem at hand. S. Bernstein first lines of [6] Abstract. One establishes inequalities for the coefficients of orthogonal polynomials Φn(z) = z n + ξnz n−1 + · · · + Φn(0), n = 0, 1, . . . which are o...
Abstract We describe an expansion of Legendre polynomials, analogous to the Taylor expansion, to approximate arbitrary functions. We show that the polynomial coefficients in Legendre expansion, thus, the whole series, converge to zero much more rapidly compared to the Taylor expansion of the same order. Furthermore, using numerical analysis with sixth-order polynomial expansion, we demonstrate ...
In this paper, a method for finding an approximate solution of a class of two-dimensional nonlinear Volterra integral equations of the first-kind is proposed. This problem is transformedto a nonlinear two-dimensional Volterra integral equation of the second-kind. The properties ofthe bivariate shifted Legendre functions are presented. The operational matrices of integrationtogether with the produ...
In this article, we apply the operational matrix to find the numerical solution of two- dimensional nonlinear Volterra integro-differential equation (2DNVIDE). Form this prospect, two-dimensional shifted Legendre functions (2DSLFs) has been presented for integration, product as well as differentiation. This method converts 2DNVIDE to an algebraic system of equations, so the numerical solution o...
The Hosoya polynomial triangle is a triangular arrangement of polynomials where each entry is a product of two polynomials. The geometry of this triangle is a good 1 tool to study the algebraic properties of polynomial products. In particular, we find closed formulas for the alternating sum of products of polynomials such as Fibonacci polynomials, Chebyshev polynomials, Morgan-Voyce polynomials...
In this paper we apply hybrid functions of general block-pulse functions and Legendre polynomials for solving linear and nonlinear multi-order fractional differential equations (FDEs). Our approach is based on incorporating operational matrices of FDEs with hybrid functions that reduces the FDEs problems to the solution of algebraic systems. Error estimate that verifies a converge...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید