نتایج جستجو برای: total k rainbow domination number

تعداد نتایج: 2143464  

Journal: :Discrete Mathematics 1996
Michael A. Henning Ortrud R. Oellermann Henda C. Swart

For any graph G and a set ~ of graphs, two distinct vertices of G are said to be ~-adjacent if they are contained in a subgraph of G which is isomorphic to a member of ~. A set S of vertices of G is an ~-dominating set (total ~¢~-dominating set) of G if every vertex in V(G)-S (V(G), respectively) is 9¢g-adjacent to a vertex in S. An ~-dominating set of G in which no two vertices are oCf-adjacen...

Journal: :bulletin of the iranian mathematical society 2014
m. n. iradmusa

for any $k in mathbb{n}$, the $k$-subdivision of graph $g$ is a simple graph $g^{frac{1}{k}}$, which is constructed by replacing each edge of $g$ with a path of length $k$. in [moharram n. iradmusa, on colorings of graph fractional powers, discrete math., (310) 2010, no. 10-11, 1551-1556] the $m$th power of the $n$-subdivision of $g$ has been introduced as a fractional power of $g$, denoted by ...

Journal: :Taiwanese Journal of Mathematics 2008

Journal: :Mathematics 2021

For a graph G, its k-rainbow independent domination number, written as γrik(G), is defined the cardinality of minimum set consisting k vertex-disjoint sets V1,V2,…,Vk such that every vertex in V0=V(G)\(∪i=1kVi) has neighbor Vi for all i∈{1,2,…,k}. This invariant was proposed by Kraner Šumenjak, Rall and Tepeh (in Applied Mathematics Computation 333(15), 2018: 353–361), which aims to compute num...

2010
A. Hansberg

For a graph G a subset D of the vertex set of G is a k-dominating set if every vertex not in D has at least k neighbors in D. The k-domination number γk(G) is the minimum cardinality among the k-dominating sets of G. Note that the 1-domination number γ1(G) is the usual domination number γ(G). Fink and Jacobson showed in 1985 that the inequality γk(G) ≥ γ(G) + k − 2 is valid for every connected ...

Journal: :Discrete Applied Mathematics 2010

Journal: :Discussiones Mathematicae Graph Theory 2006
Paul Dorbec Sylvain Gravier Sandi Klavzar Simon Spacapan

Upper and lower bounds on the total domination number of the direct product of graphs are given. The bounds involve the {2}-total domination number, the total 2-tuple domination number, and the open packing number of the factors. Using these relationships one exact total domination number is obtained. An infinite family of graphs is constructed showing that the bounds are best possible. The dom...

2002
Yung-Ling Lai Feng-Hsu Chiang Chu-He Lin Tung-Chin Yu

This paper provides lower orientable k-step domination number and upper orientable k-step domination number of complete r-partite graph for 1 ≤ k ≤ 2. It also proves that the intermediate value theorem holds for the complete r-partite graphs.

Journal: :Australasian J. Combinatorics 2004
Laura M. Harris Johannes H. Hattingh

A two-valued function f defined on the vertices of a graph G = (V,E), f : V → {−1, 1}, is a signed total dominating function if the sum of its function values over any open neighborhood is at least one. That is, for every v ∈ V, f(N(v)) ≥ 1, where N(v) consists of every vertex adjacent to v. The weight of a total signed dominating function is f(V ) = ∑ f(v), over all vertices v ∈ V . The total ...

2010
Ermelinda DeLaViña Craig E. Larson Ryan Pepper Bill Waller

The k-domination number γk(G) of a simple, undirected graph G is the order of a smallest subset D of the vertices of G such that each vertex of G is either in D or adjacent to at least k vertices in D. In 2010, the conjecture-generating computer program, Graffiti.pc, was queried for upperbounds on the 2-domination number. In this paper we prove new upper bounds on the 2-domination number of a g...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید