We prove the mean curvature flow of a spacelike graph in (Σ1 ×Σ2,g1 −g2) of a map f : Σ1 → Σ2 from a closed Riemannian manifold (Σ1,g1) with Ricci1 > 0 to a complete Riemannian manifold (Σ2,g2) with bounded curvature tensor and derivatives, and with K2 ≤ K1, remains a spacelike graph, exists for all time, and converges to a slice at infinity. We also show, with no need of the assumption K2 ≤ K1...