نتایج جستجو برای: single strand break

تعداد نتایج: 927558  

2013
Richa Gupta Mikhail Ryzhikov Olga Koroleva Mihaela Unciuleac Stewart Shuman Sergey Korolev Michael S. Glickman

Mycobacteria have two genetically distinct pathways for the homology-directed repair of DNA double-strand breaks: homologous recombination (HR) and single-strand annealing (SSA). HR is abolished by deletion of RecA and reduced in the absence of the AdnAB helicase/nuclease. By contrast, SSA is RecA-independent and requires RecBCD. Here we examine the function of RecO in mycobacterial DNA recombi...

2016
Ezeogo Obaji Teemu Haikarainen Lari Lehtiö

Human ADP-ribosyltransferase 2 (ARTD2/PARP2) is an enzyme catalyzing a post-translational modification, ADP-ribosylation. It is one of the three DNA dependent ARTDs in the 17 member enzyme family. ADP-ribosylation catalyzed by ARTD2 is involved in the regulation of multiple cellular processes such as control of chromatin remodeling, transcription and DNA repair. Here we used a combination of bi...

Journal: :Cell 2008
Zhu Zhu Woo-Hyun Chung Eun Yong Shim Sang Eun Lee Grzegorz Ira

Formation of single-strand DNA (ssDNA) tails at a double-strand break (DSB) is a key step in homologous recombination and DNA-damage signaling. The enzyme(s) producing ssDNA at DSBs in eukaryotes remain unknown. We monitored 5'-strand resection at inducible DSB ends in yeast and identified proteins required for two stages of resection: initiation and long-range 5'-strand resection. We show that...

2013
Boris P. Belotserkovskii Alexander J. Neil Syed Shayon Saleh Jane Hae Soo Shin Sergei M. Mirkin Philip C. Hanawalt

The ability of DNA to adopt non-canonical structures can affect transcription and has broad implications for genome functioning. We have recently reported that guanine-rich (G-rich) homopurine-homopyrimidine sequences cause significant blockage of transcription in vitro in a strictly orientation-dependent manner: when the G-rich strand serves as the non-template strand [Belotserkovskii et al. (...

Journal: :Journal of bacteriology 1990
S K Liu I Tessman

Repair of UV-irradiated bacteriophage in Escherichia coli by Weigle reactivation requires functional recA+ and umuD+C+ genes. When the cells were UV irradiated, the groE heat shock gene products, GroES and GroEL, were needed for at least 50% of the Weigle reactivation of the single-stranded DNA phage S13. Because of repression of the umuDC and recA genes, Weigle reactivation is normally blocked...

2009
Priscila Falagan-Lotsch Marina S. Rodrigues Viviane Esteves Roberto Vieira Luis C. Amendola Dante Pagnoncelli Júlio C. Paixão Claudia V. De Moura Gallo

The X-ray repair cross-complementing Group1 (XRCC1) gene has been defined as essential in the base excision repair (BER) and single-strand break repair processes. This gene is highly polymorphic, and the most extensively studied genetic changes are in exon 6 (Arg194Trp) and in exon 10 (Arg399Gln). These changes, in conserved protein sites, may alter the base excision repair capacity, increasing...

Journal: :Cell 2012
Ivan Psakhye Stefan Jentsch

Protein modification by SUMO affects a wide range of protein substrates. Surprisingly, although SUMO pathway mutants display strong phenotypes, the function of individual SUMO modifications is often enigmatic, and SUMOylation-defective mutants commonly lack notable phenotypes. Here, we use DNA double-strand break repair as an example and show that DNA damage triggers a SUMOylation wave, leading...

2016
Cinzia Cinesi Lorène Aeschbach Bin Yang Vincent Dion

CAG/CTG repeat expansions cause over 13 neurological diseases that remain without a cure. Because longer tracts cause more severe phenotypes, contracting them may provide a therapeutic avenue. No currently known agent can specifically generate contractions. Using a GFP-based chromosomal reporter that monitors expansions and contractions in the same cell population, here we find that inducing do...

Journal: :Toxicological sciences : an official journal of the Society of Toxicology 2014
Qin Qin Hong Xie Sandra S Wise Cynthia L Browning Kelsey N Thompson Amie L Holmes John Pierce Wise

The aim of this study was to focus on hexavalent chromium, [Cr(VI)], a chemical carcinogen and major public health concern, and consider its ability to impact DNA double strand break repair. We further focused on particulate Cr(VI), because it is the more potent carcinogenic form of Cr(VI). DNA double strand break repair serves to protect cells against the detrimental effects of DNA double stra...

Journal: :Nucleic Acids Research 2005
Jason L. Parsons Dmitry O. Zharkov Grigory L. Dianov

Base excision repair is the major pathway for the repair of oxidative DNA damage in human cells that is initiated by a damage-specific DNA glycosylase. In human cells, the major DNA glycosylases for the excision of oxidative base damage are OGG1 and NTH1 that excise 8-oxoguanine and oxidative pyrimidines, respectively. We find that both enzymes have limited activity on DNA lesions located in th...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید