نتایج جستجو برای: schur index

تعداد نتایج: 400323  

Journal: :Journal of Mathematical Analysis and Applications 2021

This paper reveals some new analytical and geometrical properties of the generalized algebraic multiplicity, χ, introduced in [7], [5] further developed [15], [17], [18]. In particular, it establishes a completely connection between χ concept local intersection index varieties, central device Algebraic Geometry. link Nonlinear Spectral Theory Geometry provides to with deep meaning. Moreover, is...

‎Let $G$ be a finite $p$-group of order $p^n$ and‎ ‎$|{mathcal M}(G)|=p^{frac{1}{2}n(n-1)-t(G)}$‎, ‎where ${mathcal M}(G)$‎ ‎is the Schur multiplier of $G$ and $t(G)$ is a nonnegative integer‎. ‎The classification of such groups $G$ is already known for $t(G)leq‎ ‎6$‎. ‎This paper extends the classification to $t(G)=7$.

2009
J. Haglund K. Luoto

In the prequel to this paper [5], we showed how results of Mason [11], [12] involving a new combinatorial formula for polynomials that are now known as Demazure atoms (characters of quotients of Demazure modules, called standard bases by Lascoux and Schützenberger [6]) could be used to define a new basis for the ring of quasisymmetric functions we call “Quasisymmetric Schur functions” (QS funct...

2011
Sarah Mason Jeffrey Remmel

Haglund, Luoto, Mason, and van Willigenburg introduced a basis for quasisymmetric functions called the quasisymmetric Schur function basis, generated combinatorially through fillings of composition diagrams in much the same way as Schur functions are generated through reverse column-strict tableaux. We introduce a new basis for quasisymmetric functions called the row-strict quasisymmetric Schur...

2007
Dong Yang

Let n, r ∈ N. The affine Schur algebra S̃(n, r) (of type A) over a field K is defined to be the endomorphism algebra of certain tensor space over the extended affine Weyl group of type Ar−1. By the affine Schur–Weyl duality it is isomorphic to the image of the representation map of the U(ĝl n ) action on the tensor space when K is the field of complex numbers. We show that S̃(n, r) can be defined...

2001
WILLIAM Y.C. CHEN

The double Schur function is a natural generalization of the factorial Schur function introduced by Biedenharn and Louck. It also arises as the symmetric double Schubert polynomial corresponding to a class of permutations called Grassmannian permutations introduced by A. Lascoux. We present a lattice path interpretation of the double Schur function based on a flagged determinantal definition, w...

2007
LUC LAPOINTE

We prove that structure constants related to Hecke algebras at roots of unity are special cases of k-Littlewood-Richardson coefficients associated to a product of k-Schur functions. As a consequence, both the 3point Gromov-Witten invariants appearing in the quantum cohomology of the Grassmannian, and the fusion coefficients for the WZW conformal field theories associated to ŝu( ) are shown to b...

Journal: :European Journal of Combinatorics 2009

2005
PAVLO PYLYAVSKYY

We prove Okounkov’s conjecture, a conjecture of Fomin-FultonLi-Poon, and a special case of Lascoux-Leclerc-Thibon’s conjecture on Schur positivity and derive several more general statements using a recent result of Rhoades and Skandera. 1. Schur positivity conjectures The ring of symmetric functions has a linear basis of Schur functions sλ labelled by partitions λ = (λ1 ≥ λ2 ≥ · · · ≥ 0). A sym...

1994
THOMAS LAM

We define a new family F̃w(X) of generating functions for w ∈ S̃n which are affine analogues of Stanley symmetric functions. We establish basic properties of these functions such as their symmetry and conjecture certain positivity properties. As an application, we relate these functions to the k-Schur functions of Lapointe, Lascoux and Morse as well as the cylindric Schur functions of Postnikov. ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید