Let T(X) be the full transformation semigroup on a set X, and let L(V) under composition of all linear transformations vector space V over field. For subset Y X subspace W V, consider semigroups $${\overline{T}}(X, Y) = \{f\in T(X):Yf \subseteq Y\}$$ $${\overline{L}}(V, W) L(V):Wf W\}$$ composition. We describe unit-regular elements in Y)$$ W)$$ . Using these, we determine when are unit-regular...