نتایج جستجو برای: pi spectral radius
تعداد نتایج: 251152 فیلتر نتایج به سال:
We characterize the graphs which achieve the maximum value of the spectral radius of the adjacency matrix in the sets of all graphs with a given domination number and graphs with no isolated vertices and a given domination number. AMS Classification: 05C35, 05C50, 05C69
We give lower bounds for the spectral radius of nonnegative matrices and nonnegative symmetric matrices, and prove necessary and sufficient conditions to achieve these bounds.
We prove theorems of Perron–Frobenius type for positive elements in partially ordered topological algebras satisfying certain hypotheses. We show how some of our results relate to known results on Banach algebras. We give examples and state some open questions. © 2005 Elsevier Inc. All rights reserved. AMS classification: 47A10; 46H35; 47B65; 15A48
In this note, we present two lower bounds for the spectral radius of the Laplacian matrices of triangle-free graphs. One is in terms of the numbers of edges and vertices of graphs, and the other is in terms of degrees and average 2-degrees of vertices. We also obtain some other related results.
Acknowledgements I first would like to thank my promotor Vincent Blondel for accepting me as his first Ph.D student, and providing me with a challenging research subject. His constructive comments, his pragmatism and his initiative were essential in the realization of this thesis. Several researchers contributed to this thesis. I would like to especially thank Alexander Vladimirov and Yurii Nes...
The independence number of a graph is defined as the maximum size of a set of pairwise non-adjacent vertices and the spectral radius is defined as the maximum eigenvalue of the adjacency matrix of the graph. Xu et al. in [The minimum spectral radius of graphs with a given independence number, Linear Algebra and its Applications 431 (2009) 937–945] determined the connected graphs of order n with...
There are 11 integral trees with largest eigenvalue 3.
We classify the growth of a k-regular sequence based on information from its k-kernel. In order to provide such a classification, we introduce the notion of a growth exponent for k-regular sequences and show that this exponent is equal to the joint spectral radius of any set of a special class of matrices determined by the k-kernel.
Recently some important results have been proved showing that the gap between the largest eigenvalue A: of a finite regular graph of valency k and its second eigenvalue is related to expansion properties of the graph [1]. In this paper we investigate infinite graphs and show that in this case the expansion properties are related to the spectral radius of the graph. First we introduce necessary ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید