نتایج جستجو برای: perceptrons
تعداد نتایج: 1707 فیلتر نتایج به سال:
A multilayer perceptron is usually considered a passive learner that only receives given training data. However, if a multilayer perceptron actively gathers training data that resolve its uncertainty about a problem being learnt, sufficiently accurate classification is attained with fewer training data. Recently, such active learning has been receiving an increasing interest. In this paper, we ...
In this paper we propose a procedure to enable the training of several independent Multilayer Perceptron Neural Networks with different number neurons and activation functions in parallel (ParallelMLPs) by exploring principle locality parallelization capabilities modern CPUs GPUs. The core idea technique is represent sub-networks as single large network use Modified Matrix Multiplication that r...
In this paper we report experiments designed to find the relationship between the different parameters of sparsely connected networks of perceptrons with small world connectivity patterns, acting as associative memories.
The artificial neural networks (ANNs) have been applied to various hydrologic problems recently. This research demonstrates static neural approach by applying Multilayer perceptrons neural network and Radial basis function neural network to rainfall-runoff modeling for the upper area of Wardha River in India. The model is developed by processing online data over time using static modeling. Meth...
In statistical pattern recognition, the decision of which features to use is usually left to human judgment. If possible, automatic methods are desirable. Like multilayer perceptrons, learning subspace methods (LSMs) have the potential to integrate feature extraction and classification. In this paper, we propose two new algorithms, along with their neural-network implementations, to overcome ce...
Wear monitoring systems often use neural networks for a sensor fusion with multiple input patterns. Systems for a continuous online supervision of wear have to process pattern sequences. Therefore recurrent neural networks have been investigated in the past. However, in most cases where only noisy input or even noisy output patterns are available for a supervised learning, success is not forthc...
A novel framework for audio-assisted dialogue detection based on indicator functions and neural networks is investigated. An indicator function defines that an actor is present at a particular time instant. The cross-correlation function of a pair of indicator functions and the magnitude of the corresponding cross-power spectral density are fed as input to neural networks for dialogue detection...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید