نتایج جستجو برای: particle manipulation
تعداد نتایج: 235822 فیلتر نتایج به سال:
We develop a new Lagrangian primitive, named Langevin particle, to incorporate turbulent flow details in fluid simulation. A group of the particles are distributed inside the simulation domain based on a turbulence energy model with turbulence viscosity. A particle in particular moves obeying the generalized Langevin equation, a well known stochastic differential equation that describes the par...
We report on the integration of microfluidic devices and superconducting magnets to enable temporal and spatial control for the application of high magnetic fields in the study of materials and physical phenomena. Here, we perform the continuous flow separation of two particle populations in high magnetic fields based on diamagnetic repulsion, as well as the manipulation of air bubbles.
We assess the suitability of the recently proposed Josephson LED for quantum manipulation purposes. We show that the device can both be used for on-demand production of entangled photon pairs and operated as a two-qubit gate. Also, one can entangle particle spin with photon polarization and/or measure the spin by measuring the polarization.
We develop a theoretical approach for describing the optical trapping and manipulation of carbon nanoclusters in air with a dual-vortex optical trap, as realized recently in experiment [V. Shvedov et al., Opt. Express 17, 5743 (2009)]. We calculate both longitudinal and transverse photophoretic forces acting on a spherical absorbing particle, and then compare our theoretical predictions with th...
In this paper, Part 7 of the thematic tutorial series "Acoustofluidics-exploiting ultrasonic standing waves, forces and acoustic streaming in microfluidic systems for cell and particle manipulation", we present the theory of the acoustic radiation force; a second-order, time-averaged effect responsible for the acoustophoretic motion of suspended, micrometre-sized particles in an ultrasound field.
We demonstrate experimentally the generation of an optical beam having an axial focusing that is narrower than the Fourier limit. The beam is constructed from a superposition of Bessel beams with different longitudinal wave vectors, realizing a super-oscillatory axial intensity distribution. Such beams can be useful for microscopy and for optical particle manipulation.
We have developed a microfluidic platform for individual particle handling by the use of ultrasonic standing waves. Elementary manipulation functions, useful in cell-based biotechnology applications, are demonstrated. Oblique coupling of ultrasound allows for any kind of high-NA optical microscopy, which is important for individual characterization of cells.
We demonstrate both theoretically and experimentally the generation of a tunable two-dimensional superoscillating optical field through the interference of multiple Airy beams. The resulting pattern exhibits self-healing properties for a set of sub-Fourier diffraction spots with decreasing dimensions. Such spatial optical fields might find applications in microscopy, particle manipulation, and ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید