نتایج جستجو برای: pareto optimal solutions
تعداد نتایج: 686059 فیلتر نتایج به سال:
This paper presents results of extensive computational experiments in which evolutionary multiobjective algorithms were used to find Pareto-optimal solutions to a complex structural design problem. In particular, Strength-Pareto Evolutionary Algorithm 2 (SPEA2) was combined with a mathematical programming method to find optimal designs of steel structural systems in tall buildings with respect ...
Conventional multi-objective Particle Swarm Optimization (PSO) algorithms aim to find a representative set of Pareto-optimal solutions from which the user may choose preferred solutions. For this purpose, most multi-objective PSO algorithms employ computationally expensive comparison procedures such as non-dominated sorting. The crucial task of choosing a single preferred solution from the obta...
Pareto optimality is someway ineffective for optimization problems with several (more than three) objectives. In fact the Pareto optimal set tends to become a wide portion of the whole design domain search space with the increasing of the numbers of objectives. Consequently, little or no help is given to the human decision maker. Here we use fuzzy logic to give two new definitions of optimality...
This paper presents an adaptive weighted sum (AWS) method for multiobjective optimization problems. The method extends the previously developed biobjective AWS method to problems with more than two objective functions. In the first phase, the usual weighted sum method is performed to approximate the Pareto surface quickly, and a mesh of Pareto front patches is identified. Each Pareto front patc...
In this chapter, we present a new method for interactive multiobjective optimization, which is based on application of a logical preference model built using the Dominance-based Rough Set Approach (DRSA). The method is composed of two main stages that alternate in an interactive procedure. In the first stage, a sample of solutions from the Pareto optimal set (or from its approximation) is gener...
A multi-objective chance-constrained programming integrated with Genetic Algorithm and robustness evaluation methods was proposed to weigh the conflict between system investment against risk for watershed load reduction, which was firstly applied to nutrient load reduction in the Lake Qilu watershed of the Yunnan Plateau, China. Eight sets of Pareto solutions were acceptable for both system inv...
Decomposition-based methods are often cited as the solution to multi-objective nonconvex optimization problems with an increased number of objectives. These methods employ a scalarizing function to reduce the multi-objective problem into a set of single objective problems, which upon solution yield a good approximation of the set of optimal solutions. This set is commonly referred to as Pareto ...
Efficient control techniques must be preceded by well-designed processes. A generally accepted definition of a well-designed process is one that is Pareto optimal, i.e., no design objective can be improved without degrading at least one other design objective. Indeed, optimal design enables effective trade-off of competing design objectives, including controllability and robustness goals. The m...
The increase in the scale of preparative chromatographic processes for biopharmaceutical applications now necessitates the development of effective optimization strategies for large-scale processes in a manufacturing setting. The current state of the art for optimization of preparative chromatography has been limited to single objective functions. Further, there is a lack of understanding of wh...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید