For an odd prime $ p and positive integers m \ell $, let \mathbb{F}_{p^m} be the finite field with p^{m} elements R_{\ell,m} = \mathbb{F}_{p^m}[v_1,v_2,\dots,v_{\ell}]/\langle v^{2}_{i}-1, v_{i}v_{j}-v_{j}v_{i}\rangle_{1\leq i, j\leq \ell} $. Thus is a commutative non-chain ring of order p^{2^{\ell} m} characteristic In this paper, we aim to construct quantum codes from skew constacyclic over F...