Let X be a linear space. A p-norm on X is a real-valued function on X with 0 < p ≤ 1, satisfying the following conditions: (i) ‖x‖p ≥ 0 and ‖x‖p = 0⇔ x = 0, (ii) ‖αx‖p = |α|p‖x‖p, (iii) ‖x+ y‖p ≤ ‖x‖p +‖y‖p, for all x, y ∈ X and all scalars α. The pair (X ,‖ · ‖p) is called a p-normed space. It is a metric linear space with a translation invariant metric dp defined by dp(x, y)= ‖x− y‖p for all ...