Let D=(V(D),A(D)) be a finite, simple digraph and k positive integer. A function f:V(D)→{0,1,2,…,k+1} is called [k]-Roman dominating (for short, [k]-RDF) if f(AN−[v])≥|AN−(v)|+k for any vertex v∈V(D), where AN−(v)={u∈N−(v):f(u)≥1} AN−[v]=AN−(v)∪{v}. The weight of [k]-RDF f ω(f)=∑v∈V(D)f(v). minimum on D the domination number, denoted by γ[kR](D). For k=2 k=3, we call them double Roman number tr...