Let $X$ be a nonempty set. Denote by $\mathcal{F}^n_k$ the class of associative operations $F\colon X^n\to X$ satisfying condition $F(x_1,\ldots,x_n)\in\{x_1,\ldots,x_n\}$ whenever at least $k$ elements $x_1,\ldots,x_n$ are equal to each other. The $\mathcal{F}^n_1$ said quasitrivial and those $\mathcal{F}^n_n$ idempotent. We show that $\mathcal{F}^n_1=\cdots =\mathcal{F}^n_{n-2}\subseteq\mathc...