نتایج جستجو برای: mopso nsga
تعداد نتایج: 2497 فیلتر نتایج به سال:
Abstract. This paper examines the effect of crossover operations on the performance of EMO algorithms through computational experiments on knapsack problems and flowshop scheduling problems using the NSGA-II algorithm. We focus on the relation between the performance of the NSGA-II algorithm and the similarity of recombined parent solutions. First we show the necessity of crossover operations t...
Optimal design problem are widely known by their multiple performance measures that are often competing with each other. In this paper, an optimal multiproduct batch chemical plant design is presented. The design is firstly formulated as a multiobjective optimization problem, to be solved using the well suited non dominating sorting genetic algorithm (NSGA-II). The NSGA-II have capability to ac...
In this paper, we apply an elitist multi-objective genetic algorithm for solving mechanical component design problems with multiple objectives. Although there exists a number of classical techniques, evolutionary algorithms (EAs) have an edge over the classical methods in that they can find multiple Pareto-optimal solutions in one single simulation run. The proposed algorithm (we call NSGA-II) ...
The Evolutionary Computation has grown much in last few years. Inspired by biological evolution, this field is used to solve NP-hard optimization problems to come up with best solution. TSP is most popular and complex problem used to evaluate different algorithms. In this paper, we have conducted a comparative analysis between NSGA-II, NSGA-III, SPEA-2, MOEA/D and VEGA to find out which algorit...
Many control problems involve simultaneous optimization of multiple performance measures that are often noncommensurable and competing with each other. Traditionally, classical optimization algorithms based on nonlinear programming or optimal control theory is applied to obtain the solution of such problems using different scalar approaches. The presence of multiple objectives in a problem usua...
Reconfigurable Manufacturing System (RMS) justifies the need of hour by combining the high throughput of dedicated manufacturing system with the flexibility of flexible manufacturing systems. At the heart of RMS lies the Reconfigurable Machine Tools which are capable of performing multiple operations in its existing configurations and can further be reconfigured into more configurations which m...
The application of multi objective model predictive control approaches is significantly limited with computation time associated with optimization algorithms. Metaheuristics are general purpose heuristics that have been successfully used in solving difficult optimization problems in a reasonable computation time. In this work , we use and compare two multi objective metaheuristics, Multi-Object...
Software cost estimation is the process of predicting the effort required to develop a software system. The basic input for the software cost estimation is coding size and set of cost drivers, the output is Effort in terms of Person-Months (PM’s). Here, the use of support vector regression (SVR) has been proposed for the estimation of software project effort. We have used the COCOMO dataset and...
در دنیای پرتنش و پرآشوب امروزی، وجود نیروی نظامی قوی و کارآمد از سرمایههای راهبردی هر ملت محسوب میشود. در این میان، طراحی و بهروزرسانی تجهیزات نظامی و افزایش قابلیت اطمینان و ماندگاری آنها اهمیت ویژهای دارد. مدل ریاضی بهینهسازی تجهیزات نظامی در مرحله طراحی، از یکسو به دلیل پیچیدگی و حجم بالای محاسبات در گروه مسائل Np-hard قرار داشته و برای حل نیازمند روشهای فرا ابتکاری است و از سوی دیگر...
Based on the analysis on the basic principles and characteristics of the existing multiobjective genetic algorithm (MOGA), an improved multi-objective GA with elites maintain is put forward based on non-dominated sorting genetic algorithm (NSGA). NSGA-II algorithm theory and parallel hybrid evolutionary theory is described in detail. The design principle, process and detailed implementations of...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید