نتایج جستجو برای: modis images

تعداد نتایج: 268828  

Journal: :Remote Sensing 2015
Jinhu Bian Ainong Li Qingfang Wang Chengquan Huang

Time series remote sensing products with both fine spatial and dense temporal resolutions are urgently needed for many earth system studies. The development of small satellite constellations with identical sensors affords novel opportunities to provide such kind of earth observations. In this paper, a new dense time series 30-m image product was proposed respectively based on an 8-day, 16-day a...

Journal: :Remote Sensing 2017
Rubén Ramo Emilio Chuvieco

This paper aims to develop a global burned area (BA) algorithm for MODIS BRDF-corrected images based on the Random Forest (RF) classifier. Two RF models were generated, including: (1) all MODIS reflective bands; and (2) only the red (R) and near infrared (NIR) bands. Active fire information, vegetation indices and auxiliary variables were taken into account as well. Both RF models were trained ...

2003
Dagrun Vikhamar Rune Solberg

A snow-cover mapping method accounting for forests (SnowFrac) is presented. SnowFrac uses spectral unmixing and endmember constraints to estimate the snow-cover fraction of a pixel. The unmixing is based on a linear spectral mixture model, which includes endmembers for snow, conifer, branches of leafless deciduous trees and snow-free ground. Model input consists of a land-cover fraction map and...

2015
Qunming Wang Wenzhong Shi Peter M. Atkinson Yuanling Zhao

a Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong b Faculty of Science and Technology, Engineering Building, Lancaster University, Lancaster LA1 4YR, UK c Faculty of Geosciences, University of Utrecht, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands d School of Geography, Archaeology and Palaeoecology, Queen's University Belfast, BT7...

2004
Markus Törmä Juho Lumme Ulla Pyysalo Niina Patrikainen Kari Luojus

A set of ERS SAR and optical MODIS-images were classified to land cover and tree species classes. Different methods for pixel and decision based data fusion were tested. Classifications of featuresets were carried out using Bayes rule for minimum error. The results were not very successful, the classification accuracies of land cover classes varied from 43% to 75%, depending on the used feature...

2011
María Isabel Cruz López Rainer Ressl

Since 1999, The National Commission for the Knowledge and Use of Biodiversity (CONABIO) contributes to combating Forest Fires in Mexico and Central America, by means of CONABIO ́s program for hot spot detection using remote sensing techniques. Currently the program is using Terra/Aqua-MODIS satellite images between six and eight times a day to detect hot spots which might be considered as possib...

2004
Sun-Hwa Kim Kyu-Sung Lee

MODIS LAI product has been increasingly important for analyzing the process and productivity of terrestrial ecosystems at global scale. This study was aimed to assess the quality of global MODIS LAI product for applications in regional and even in local scales. To examine the quality of MODIS LAI data, we produced a reference LAI map that was derived by relating the ground-measured LAI to Lands...

Journal: :SSRG international journal of geoinformatics and geological science 2022

Using MODIS data, the present study analyzed spatial distributions and annual variability of Bio-Geochemical concentrations from 2011 to 2020 in Northern Indian Ocean. The observed significant variations parameters such as PAR (Photosynthetically Active Radiation), SST (Sea Surface Temperature), Chlorophyll. Annual composite images MODIS-Aqua derived Chlorophyll & SST, POC were retrieved 2020, ...

2013
Markus Törmä

Land cover of Finnish Lapland was classified to 16 land cover classes using optical IRS LISS, Spot XS and MODIS satellite images, ancillary GIS data and decision tree classifier. The aim of this study was to test decision tree classifier for land cover classification and study the effects of its parameters to classification result. In the best case, the overall accuracy was about 68% for all 16...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->