نتایج جستجو برای: mean clustering method
تعداد نتایج: 2188180 فیلتر نتایج به سال:
Flexibility of woven fabric structure has caused many errors in yarn location detection using customary methods of image processing. On this line, proposing an adaptive method with fabric image properties is concentrated to extract its parameters. In this regards, using meta-heuristic algorithms seems applicable to correspond extraction algorithm of structural parameters to the image conditions...
This paper presents an unsupervised texture image segmentation algorithm using clustering. Two criteria are proposed in order to construct a feature space of reduced dimensions for texture image segmentation, based on selected Gabor ?lter subset from a prede?ned Gabor ?lter set. An unsupervised clustering algorithm using the mean shift clustering method is then applied to the reduced feature sp...
Clustering of high-dimensional biological big data is incredibly difficult and challenging task, as the data space is often too big and too messy. The conventional clustering methods can be inefficient and ineffective on high-dimensional biological big data, because traditional distance measures may be dominated by the noise in many dimensions. An additional challenge in biological big data is ...
Clustering of objects is an important area of research and application in variety of fields. In this paper we present a good technique for data clustering and application of this Technique for data clustering in a closed area. We compare this method with K-nearest neighbor and K-means.
This paper introduces a dynamic classification method inspired by DBSCAN clustering method for machine condition monitoring in general and for bearings in particular. This method has been developed for two purposes; first to monitor the health condition of a bearing in real time and second to study the behavior of defected rolling element bearing. To fulfill those purposes, the temporal indicat...
Clustering is the task of grouping a set of objects in such a way that objects are more similar to each other than those in the other groups. Various clustering algorithms were developed, but it ignores the spatial relationship between pixel values then noise can be added to the image and it does not provide edge detection accuracy. Fuzzy local information C-means is the best image clustering m...
Identifying clusters is an important aspect of data analysis. This paper proposes a noveldata clustering algorithm to increase the clustering accuracy. A novel game theoretic self-organizingmap (NGTSOM ) and neural gas (NG) are used in combination with Competitive Hebbian Learning(CHL) to improve the quality of the map and provide a better vector quantization (VQ) for clusteringdata. Different ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید