نتایج جستجو برای: localic algebra
تعداد نتایج: 69856 فیلتر نتایج به سال:
In this paper, we will study the theory of cyclic homology for regular multiplier Hopf algebras. We associate a cyclic module to a triple $(mathcal{R},mathcal{H},mathcal{X})$ consisting of a regular multiplier Hopf algebra $mathcal{H}$, a left $mathcal{H}$-comodule algebra $mathcal{R}$, and a unital left $mathcal{H}$-module $mathcal{X}$ which is also a unital algebra. First, we construct a para...
In [1,2,3], A. C. Baker and J.W. Baker studied the subspace Ma(S) of the convolution measure algebra M, (S) of a locally compact semigroup. H. Dzinotyiweyi in [5,7] considers an analogous measure space on a large class of C-distinguished topological semigroups containing all completely regular topological semigroups. In this paper, we extend the definitions to study the weighted semigroup ...
For a Hopf algebra H over a commutative ring k and a left H-module V, the tensor endofunctors V k - and - kV are left adjoint to some kinds of Hom-endofunctors of _HM. The units and counits of these adjunctions are formally trivial as in the classical case.The category of (bi-) modules over a quasi-Hopf algebra is monoidal and some generalized versions of Hom-tensor relations have been st...
In this paper, we continue our study on HvMV-algebras. The quotient structure of an HvMV-algebra by a suitable types of congruences is studied and some properties and related results are given. Some homomorphism theorems are given, as well. Also, the fundamental HvMV-algebra and the direct product of a family of HvMV-algebras are investigated and some related results are obtained.
In this paper we show that if A is a unital Banach algebra and B is a purely innite C*-algebra such that has a non-zero commutative maximal ideal and $phi:A rightarrow B$ is a unital surjective spectrum preserving linear map. Then $phi$ is a Jordan homomorphism.
Let $A$ be a $C^*$-algebra and $E$ be a left Hilbert $A$-module. In this paper we define a product on $E$ that making it into a Banach algebra and show that under the certain conditions $E$ is Arens regular. We also study the relationship between derivations of $A$ and $E$.
A Banach lattice algebra is a Banach lattice, an associative algebra with a sub-multiplicative norm and the product of positive elements should be positive. In this note we study the Arens regularity and cohomological properties of Banach lattice algebras.
In the category Top0 of T0-spaces and continuous maps, embeddings are just those morphisms with respect to which the Sierpiński space is Kan-injective, and the Kan-injective hull of the Sierpiński space is the category of continuous lattices and maps preserving directed suprema and arbitrary infima. In the category Loc of locales and localic maps, we give an analogous characterization of flat e...
we study algebraic properties of categories of merotopic, nearness, and filter algebras. we show that the category of filter torsion free abelian groups is an epireflective subcategory of the category of filter abelian groups. the forgetful functor from the category of filter rings to filter monoids is essentially algebraic and the forgetful functor from the category of filter groups to the cat...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید