نتایج جستجو برای: k means method

تعداد نتایج: 2217835  

2018
Vincent Cohen-Addad

We consider the popular k-means problem in d-dimensional Euclidean space. Recently Friggstad, Rezapour, Salavatipour [FOCS’16] and Cohen-Addad, Klein, Mathieu [FOCS’16] showed that the standard local search algorithm yields a p1`εq-approximation in time pn ̈kq Opdq , giving the first polynomialtime approximation scheme for the problem in low-dimensional Euclidean space. While local search achiev...

2011
Joerg Schmalenstroeer Markus Bartek Reinhold Häb-Umbach

In this paper we propose to jointly consider Segmental Dynamic Time Warping and distance clustering for the unsupervised learning of acoustic events. As a result, the computational complexity increases only linearly with the dababase size compared to a quadratic increase in a sequential setup, where all pairwise SDTW distances between segments are computed prior to clustering. Further, we discu...

Journal: :JCS 2014
Bashar Aubaidan Masnizah Mohd Mohammed Albared

This study presents the results of an experimental study of two document clustering techniques which are kmeans and k-means++. In particular, we compare the two main approaches in crime document clustering. The drawback of k-means is that the user needs to define the centroid point. This becomes more critical when dealing with document clustering because each center point represented by a word ...

2017
Jun Younes Louhi Kasahara Hiromitsu Fujii Atsushi Yamashita Hajime Asama

In this paper we present an online unsupervised method based on clustering to find defects in concrete structures using hammering. First, the initial dataset of sound samples is roughly clustered using the k-means algorithm with the k-means++ seeding procedure in order to find the cluster best representative of the structure. Then the regular model for the hammering sound, the centroid of this ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه زنجان - دانشکده علوم 1393

در این پروژه شبکه عصبی احتمالی، الکوریتم k-means و تحلیل مولفه های اصلی برای طبقه بندی خودکار طیف های ستاره ای به کارگرفته شده اند. برای رسیدن به این هدف،ازمجموعه طیف های ستاره ای جمع آوری شده توسط sloandigitalskysurveysegue-dr9 و dr10 استفاده شده است، که شامل 400013 طیف با بازه مشترک طول موجی 3850تا 8900 آنگستروم می باشد. طیف های ستاره ای اغلب شامل مقدار زیادی اطلاعات اضافی یا نوفه می باشند...

Journal: :Appl. Soft Comput. 2012
Fouad Khan

K-means is one of the most widely used clustering algorithms in various disciplines, especially for large datasets. However the method is known to be highly sensitive to initial seed selection of cluster centers. K-means++ has been proposed to overcome this problem and has been shown to have better accuracy and computational efficiency than k-means. In many clustering problems though –such as w...

M. B. Menhaj, M. Ghayekhloo

In order to provide an efficient conversion and utilization of solar power, solar radiation datashould be measured continuously and accurately over the long-term period. However, the measurement ofsolar radiation is not available to all countries in the world due to some technical and fiscal limitations. Hence,several studies were proposed in the literature to find mathematical and physical mod...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید