نتایج جستجو برای: k means clustering

تعداد نتایج: 786274  

Journal: :Computatio : Journal of Computer Science and Information Systems 2017

2008
Nesrine Chehata Nicolas David Frédéric Bretar

This paper deals with lidar point cloud filtering and classification for modelling the Terrain and more generally for scene segmentation. In this study, we propose to use the well-known K-means clustering algorithm that filters and segments (point cloud) data. The Kmeans clustering is well adapted to lidar data processing, since different feature attributes can be used depending on the desired ...

Journal: :IEEE Intelligent Informatics Bulletin 2014
Sadaaki Miyamoto

While classification rules are essential in supervised classification methods, they are not noticed well in methods of clustering. Nevertheless, some clustering techniques have clear rules of classification, while they are not obvious in other methods. This paper discusses classification rules or classification functions in the former class including K-means, fuzzy c-means, and the mixture of d...

2010
Yi Gu Chaoli Wang

Correlation study is at the heart of time-varying multivariate volume data analysis and visualization. In this paper, we study hierarchical clustering of volumetric samples based on the similarity of their correlation relation. Samples are selected from a time-varying multivariate climate data set according to knowledge provided by the domain experts. We present three different hierarchical clu...

2014
Natalie Telis

Last time, we introduced the task of hierarchical clustering, in which we aim to produce nested clusterings that reflect the similarity between clusters. This contrasts sharply with our former discussion of “flat” or structureless clustering methods like k-means which do not model relationships between clusters. In this lecture, we will continue our discussion of the standard model-free approac...

2015
MARCIN PEŁKA ANDRZEJ DUDEK Marcin Pełka Andrzej Dudek

Interval-valued data can find their practical applications in such situations as recording monthlyinterval temperatures at meteorological stations, daily interval stock prices, etc. The primary objectiveof the presented paper is to compare three different methods of fuzzy clustering for interval-valuedsymbolic data, i.e.: fuzzy c-means clustering, adaptive fuzzy c-means clustering a...

Journal: :Discrete & Computational Geometry 2006

Journal: :CoRR 2017
Srikanta Kolay Kumar Sankar Ray Abhoy Chand Mondal

K-means (MacQueen, 1967) [1] is one of the simplest unsupervised learning algorithms that solve the well-known clustering problem. The procedure follows a simple and easy way to classify a given data set to a predefined, say K number of clusters. Determination of K is a difficult job and it is not known that which value of K can partition the objects as per our intuition. To overcome this probl...

2004
D T Pham

The K-means algorithm is a popular data-clustering algorithm. However, one of its drawbacks is the requirement for the number of clusters, K, to be specified before the algorithm is applied. This paper first reviews existing methods for selecting the number of clusters for the algorithm. Factors that affect this selection are then discussed and a new measure to assist the selection is proposed....

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید