نتایج جستجو برای: isomorphism of categories
تعداد نتایج: 21167472 فیلتر نتایج به سال:
Given a symmetrizable generalized Cartan matrix A, for any index k, one can define an automorphism associated with A, of the field Q(u1, · · · , un) of rational functions of n independent indeterminates u1, · · · , un. It is an isomorphism between two cluster algebras associated to the matrix A (see section 4 for precise meaning). When A is of finite type, these isomorphisms behave nicely, they...
It is shown that the cubical nerve of a strict omega-category is a sequence of sets with cubical face operations and distinguished subclasses of thin elements satisfying certain thin filler conditions. It is also shown that a sequence of this type is the cubical nerve of a strict omega-category unique up to isomorphism; the cubical nerve functor is therefore an equivalence of categories. The se...
Given a symmetrizable generalized Cartan matrix A, for any index k, one can define an automorphism associated with A, of the field Q(u1, · · · , un) of rational functions of n independent indeterminates u1, · · · , un. It is an isomorphism between two cluster algebras associated to the matrix A (see section 4 for precise meaning). When A is of finite type, these isomorphisms behave nicely, they...
It is shown that all the assumptions for symmetric monoidal categories flow out of a unifying principle involving natural isomorphisms of the type (A ∧B) ∧ (C ∧D) → (A ∧ C) ∧ (B ∧D), called medial commutativity. Medial commutativity in the presence of the unit object enables us to define associativity and commutativity natural isomorphisms. In particular, Mac Lane’s pentagonal and hexagonal coh...
The objects of study of mathematics are often sets with some additional information. E. g. for a group the additional information is the binary operation, for a topological space the family of open sets, for a graph the set of its edges. Equivalences and mutual relations between objects are studied by means of a special class of mappings which is chosen according to the pourpose of the study. T...
It is shown that all the assumptions for symmetric monoidal categories flow out of a unifying principle involving natural isomorphisms of the type (A ∧B) ∧ (C ∧D) → (A ∧ C) ∧ (B ∧D), called medial commutativity. Medial commutativity in the presence of the unit object enables us to define associativity and commutativity natural isomorphisms. In particular, Mac Lane’s pentagonal and hexagonal coh...
With any even Hecke symmetry R (that is a Hecke type solution of the Yang-Baxter equation) we associate a quasitensor category. We formulate a condition on R implying that the constructed category is rigid and its commutativity isomorphisms RU,V are natural in the sense of [T]. We show that this condition leads to rescaling the initial Hecke symmetry. We suggest a new way of introducing traces ...
It is shown that all the assumptions for symmetric monoidal categories flow out of a unifying principle involving natural isomorphisms of the type (A ∧B) ∧ (C ∧D) → (A ∧ C) ∧ (B ∧D), called medial commutativity. Medial commutativity in the presence of the unit object enables us to define associativity and commutativity natural isomorphisms. In particular, Mac Lane’s pentagonal and hexagonal coh...
As part of an ongoing project to unify the treatment of symmetric lenses (of various kinds) as equivalence classes of spans of asymmetric lenses (of corresponding kinds) we relate the symmetric delta lenses of Diskin et al, with spans of asymmetric delta lenses. Because delta lenses are based on state spaces which are categories rather than sets there is further structure that needs to be accou...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید