نتایج جستجو برای: hydrogen storage materials

تعداد نتایج: 740743  

2017

We study polylithiated molecules as building blocks for hydrogen storage materials, using first-principles calculations. CLi4 and OLi2 bind 12 and 10 hydrogen molecules, respectively, with an average binding energy of 0.10 and 0.13 eV, leading to gravimetric densities of 37.8 and 40.3 weight % H. Bonding between Li and C or O is strongly polar and H2 molecules attach to the partially charged Li...

2017

We study polylithiated molecules as building blocks for hydrogen storage materials, using first-principles calculations. CLi4 and OLi2 bind 12 and 10 hydrogen molecules, respectively, with an average binding energy of 0.10 and 0.13 eV, leading to gravimetric densities of 37.8 and 40.3 weight % H. Bonding between Li and C or O is strongly polar and H2 molecules attach to the partially charged Li...

2009
Shengqian Ma

Porous metal–organic frameworks (MOFs) represent a new type of functional materials and have recently become a hot research field due to their great potential in various applications. In this review, recent progress of gas adsorption applications of porous MOFs, mainly including hydrogen storage, methane storage, and selective gas adsorption will be briefly summarized.

Journal: :Angewandte Chemie 2008
Jun Yang Andrea Sudik Donald J Siegel Devin Halliday Andrew Drews Roscoe O Carter Christopher Wolverton Gregory J Lewis J W Adriaan Sachtler John J Low Syed A Faheem David A Lesch Vidvuds Ozolins

Conventional (e.g. MgH2) and complex hydrides (e.g. alanates, borohydrides, and amides) are the two primary classes of solid-state hydrogen-storage materials. Many of these “high-density” hydrides have the potential to store large amounts of hydrogen by weight (up to 18.5 wt% for LiBH4) and/or volume (up to 112 gL!1 for MgH2), values that are comparable to the hydrogen content of gasoline (15.8...

2009
Junga Ryou

We present a first-principles study of geometrical structure and energetics of hydrogen adsorbed on hexagonal single-walled silicon nanotubes (SiNTs). The adsorption behaviors of hydrogen molecules in SiNTs are investigated. The binding energies for the most stable physisorbed configurations are calculated to be less than 0.1 eV. The energy barriers are also investigated for dissociation of H2 ...

Journal: :Langmuir : the ACS journal of surfaces and colloids 2016
Farzaneh Shayeganfar Rouzbeh Shahsavari

Hydrogen storage capacities have been studied on newly designed three-dimensional pillared boron nitride (PBN) and pillared graphene boron nitride (PGBN). We propose these novel materials based on the covalent connection of BNNTs and graphene sheets, which enhance the surface and free volume for storage within the nanomaterial and increase the gravimetric and volumetric hydrogen uptake capaciti...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید