نتایج جستجو برای: histone deacetylase inhibitors

تعداد نتایج: 228207  

Journal: :Clinical cancer research : an official journal of the American Association for Cancer Research 2009
H Miles Prince Mark J Bishton Simon J Harrison

Over the last 5 years, a plethora of histone deacetylase inhibitors (HDACi) have been evaluated in clinical trials. These drugs have in common the ability to hyperacetylate both histone and nonhistone targets, resulting in a variety of effects on cancer cells, their microenvironment, and immune responses. To date, responses with single agent HDACi have been predominantly observed in advanced he...

2013
Katherine Ververis Alison Hiong Tom C Karagiannis Paul V Licciardi

Histone deacetylase (HDAC) inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents) as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb hom...

2015
Kasi Murugan Shanmugasamy Sangeetha Shanmugasamy Ranjitha Antony Vimala Saleh Al-Sohaibani Gopal Rameshkumar

An histone deacetylase (HDAC) inhibitor database (HDACiDB) was constructed to enable rapid access to data relevant to the development of epigenetic modulators (HDAC inhibitors [HDACi]), helping bring precision cancer medicine a step closer. Thousands of HDACi targeting HDACs are in various stages of development and are being tested in clinical trials as monotherapy and in combination with other...

Journal: :Current opinion in oncology 2003
Walid K Rasheed Ricky W Johnstone H Miles Prince

Histones are a family of nuclear proteins that interact with DNA, resulting in DNA being wrapped around a core of histone octamer within the nucleosome. Acetylation/deacetylation of histones is an important mechanism that regulates gene expression and chromatin remodeling. Histone deacetylase (HDAC) inhibitors are a new class of chemotherapeutic drugs that regulate gene expression by enhancing ...

2010
Erik W. Bush Timothy A. McKinsey

Acetylation of histone and nonhistone proteins provides a key mechanism for controlling signaling and gene expression in heart and kidney. Pharmacological inhibition of protein deacetylation with histone deacetylase (HDAC) inhibitors has shown promise in preclinical models of cardiovascular and renal disease. Efficacy of HDAC inhibitors appears to be governed by pleiotropic salutary actions on ...

Journal: :Current opinion in chemical biology 2010
Robert A Copeland Edward J Olhava Margaret Porter Scott

Epigenetic control of gene transcription is the result of enzyme-mediated covalent modifications of promoter-region DNA sites and of histone proteins around which chromosomal DNA is wound. Many of the enzymes that mediate these epigenetic reactions are dysregulated in human diseases. Small molecule inhibitors against two classes of these enzymes have been approved for use in patients: DNA methy...

2014
Atefeh Haji Agha Bozorgi Afshin Zarghi

Histone deacetylase inhibitors have gained a great deal of attention recently for the treatment of cancers and inflammatory diseases. So design of new inhibitors is of great importance in pharmaceutical industries and labs. Creating pharmacophor models in order to design new molecules or search a library for finding lead compounds is of great interest. This approach reduces the overall cost ass...

2015
Jessica A. Engel Amy J. Jones Vicky M. Avery Subathdrage D.M. Sumanadasa Susanna S. Ng David P. Fairlie Tina S. Adams Katherine T. Andrews

Histone deacetylase (HDAC) enzymes work together with histone acetyltransferases (HATs) to reversibly acetylate both histone and non-histone proteins. As a result, these enzymes are involved in regulating chromatin structure and gene expression as well as other important cellular processes. HDACs are validated drug targets for some types of cancer, with four HDAC inhibitors clinically approved....

2017
Tomas Eckschlager Johana Plch Marie Stiborova Jan Hrabeta

Carcinogenesis cannot be explained only by genetic alterations, but also involves epigenetic processes. Modification of histones by acetylation plays a key role in epigenetic regulation of gene expression and is controlled by the balance between histone deacetylases (HDAC) and histone acetyltransferases (HAT). HDAC inhibitors induce cancer cell cycle arrest, differentiation and cell death, redu...

Journal: :Molecular carcinogenesis 2006
Melinda C Myzak Emily Ho Roderick H Dashwood

In cancer cells, an imbalance often exists between histone acetyltransferase (HAT) and histone deacetylase (HDAC) activities, and various drug companies are actively seeking competitive HDAC inhibitors for chemotherapeutic intervention. Cancer cells appear to be more sensitive than nontransformed cells to HDAC inhibitors, which disrupt the cell cycle and induce apoptosis via derepression of gen...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید