نتایج جستجو برای: glutamate neurotoxicity
تعداد نتایج: 56002 فیلتر نتایج به سال:
Neuroinflammation is involved in the pathogenesis of Alzheimer's disease (AD). Microglia, macrophage-like resident immune cells in the brain, play critical roles in the inflammatory aspects of AD. Microglia may be activated by oligomeric and fibrillar species of amyloid β (Aβ) that are constituents of senile plaques and by molecules derived from degenerated neurons, such as purines and chemokin...
Neuronal damage in HIV infection results mainly from chronic activation of brain tissue and involves inflammation, oxidative stress, and glutamate-related neurotoxicity. Glutamate toxicity acts via two distinct pathways: an excitotoxic one, in which glutamate receptors are hyperactivated, and an oxidative one, in which cystine uptake is inhibited, resulting in glutathione depletion, oxidative s...
Pre-ischemic treadmill training exerts cerebral protection in the prevention of cerebral ischemia by alleviating neurotoxicity induced by excessive glutamate release following ischemic stroke. However, the underlying mechanism of this process remains unclear. Cerebral ischemia-reperfusion injury was observed in a rat model after 2 weeks of pre-ischemic treadmill training. Cerebrospinal fluid wa...
Microglial activation as part of a chronic inflammatory response is a prominent component of Alzheimer's disease. Secreted forms of the beta-amyloid precursor protein (sAPP) previously were found to activate microglia, elevating their neurotoxic potential. To explore neurotoxic mechanisms, we analyzed microglia-conditioned medium for agents that could activate glutamate receptors. Conditioned m...
Activation of the N-methyl-D-aspartate receptor (NMDAR) is fundamental in the development of hyperalgesia. Overactivation of this receptor releases superoxide and nitric oxide that, in turn, forms peroxynitrite (PN). All of these events have been linked to neurotoxicity. The receptors and enzymes involved in the handling of glutamate pathway--specifically NMDARs, glutamate transporter, and glut...
As the major neurotransmitter in the mammalian central nervous system (CNS), excessive extracellular glutamate (Glu) can activate the Glu receptors and neuronal calcium (Ca2+) overload, then produce neurotoxicity, which is a common pathway for neuronal injury or death, and is associated with acute and chronic neurodegenerative diseases. Therefore, it has been a therapeutic strategy to investiga...
Neurotoxicity induced by overstimulation of N-methyl-D-aspartate (NMDA) receptors is due, in part, to a sustained rise in intracellular Ca2+; however, little is known about the ensuing intracellular events that ultimately result in cell death. Here we show that overstimulation of NMDA receptors by relatively low concentrations of glutamate induces apoptosis of cultured cerebellar granule neuron...
An excessive release of glutamate is considered to be a molecular mechanism associated with several neurological diseases that causes neuronal damage. Therefore, searching for compounds that reduce glutamate neurotoxicity is necessary. In this study, the possibility that the natural flavone acacetin derived from the traditional Chinese medicine Clerodendrum inerme (L.) Gaertn is a neuroprotecti...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید