نتایج جستجو برای: galois

تعداد نتایج: 6313  

Journal: :Experimental Mathematics 2007
Darrin Doud

Serre’s conjecture relates two-dimensional odd irreducible Galois representations over F̄p to modular forms. We discuss a generalization of this conjecture to higher-dimensional Galois representations. In particular, for n-dimensional Galois representations which are irreducible when restricted to the decomposition group at p, we strengthen a conjecture of Ash, Doud, and Pollack. We then give co...

In this paper, we employ the concept of the Generalized Discrete Fourier Transform, which in turn relies on the Hasse derivative of polynomials, to give a general construction of Reed-Solomon codes over Galois fields of characteristic not necessarily co-prime with the length of the code. The constructed linear codes  enjoy nice algebraic properties just as the classic one.

A. A. Ramadan L. Li

Galois connection in category theory play an important role inestablish the relationships between different spatial structures. Inthis paper, we prove that there exist many interesting Galoisconnections between the category of Alexandroff $L$-fuzzytopological spaces, the category of reflexive $L$-fuzzyapproximation spaces and the category of Alexandroff $L$-fuzzyinterior (closure) spaces. This ...

1996
Andy R. Magid

Differential Galois theory has known an outburst of activity in the last decade. To pinpoint what triggered this renewal is probably a matter of personal taste; all the same, let me start the present review by a tentative list, restricted on purpose to “non-obviously differential” occurrences of the theory (and also, as in the book under review, to the Galois theory of linear differential equat...

1994
Andy R. Magid

D ifferential Galois theory, like the more familiar Galois theory of polynomial equations on which it is modeled, aims to understand solving differential equations by exploiting the symmetry group of the field generated by a complete set of solutions to a given equation. The subject was invented in the late nineteenth century, and by the middle of the twentieth had been recast in modern rigorou...

Journal: :J. Symb. Log. 2008
James Gray

James Ax showed that, in each characteristic, there is a natural bijection from the space of complete theories of pseudo-finite fields, in first order logic, to the set of conjugacy classes of procyclic subgroups of the absolute Galois group of the prime field. I show that when the set of subgroups of a profinite group is considered to have the Vietoris (a.k.a. hyperspace, finite, exponential, ...

2004
NICOLE LEMIRE JOHN SWALLOW

Let F be a field containing a primitive pth root of unity, and let U be an open normal subgroup of index p of the absolute Galois group GF of F . We determine the structure of the cohomology group H(U, Fp) as an Fp[GF /U ]-module for all n ∈ N. Previously this structure was known only for n = 1, and until recently the structure even of H(U, Fp) was determined only for F a local field, a case se...

2008
ROBERT GURALNICK MICHAEL HARRIS NICHOLAS M. KATZ

The “Galois representations” of the title are modular representations ρ of the Galois groups of a number field F , and the ”automorphic realization” of the title refers to obtaining these representations as constituents of Galois representations attached to automorphic representations of general linear groups over F . The present article refines the moduli-theoretic arguments of [HST] to show t...

Journal: :Math. Comput. 2003
Ku-Young Chang Soun-Hi Kwon

We determine all the non-abelian normal CM-fields of degree 24 with class number one, provided that the Galois group of their maximal real subfields is isomorphic to A4, the alternating group of degree 4 and order 12. There are two such fields with Galois group A4 × C2 (see Theorem 14) and at most one with Galois group SL2(F3) (see Theorem 18); if the Generalized Riemann Hypothesis is true, the...

Journal: :Notre Dame Journal of Formal Logic 2011
Tapani Hyttinen Meeri Kesälä

We study Lascar strong types and Galois types and especially their relation to notions of type which have finite character. We define a notion of a strong type with finite character, so called Lascar type. We show that this notion is stronger than Galois type over countable sets in simple and superstable finitary AECs. Furthermore we give and example where the Galois type itself does not have f...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید