نتایج جستجو برای: fuzzy logistic regression

تعداد نتایج: 417759  

2014
Yufei Wang

In this project, we study learning the Logistic Regression model by gradient ascent and stochastic gradient ascent. Regularization is used to avoid overfitting. Some practical tricks to improve learning are also explored, such as batch-based gradient ascent, data normalization, grid searching, early stopping, and model averaging. We observe the factors that affect the result, and determine thes...

2006
Gennady G. Pekhimenko

Investigation for using different penalty functions (L1 absolute value penalty or lasso, L2 standard weight decay or ridge regression, weight elimination etc.) on the weights for logistic regression for classification. 5 data sets from UCI Machine Learning Repository were used.

2008
Paul D. Allison

A frequent problem in estimating logistic regression models is a failure of the likelihood maximization algorithm to converge. In most cases, this failure is a consequence of data patterns known as complete or quasi-complete separation. For these patterns, the maximum likelihood estimates simply do not exist. In this paper, I examine how and why complete or quasi-complete separation occur, and ...

2013
Justin Domke

A successful approach to structured learning is to write the learning objective as a joint function of linear parameters and inference messages, and iterate between updates to each. This paper observes that if the inference problem is “smoothed” through the addition of entropy terms, for fixed messages, the learning objective reduces to a traditional (non-structured) logistic regression problem...

2005
Andrew Ian Schein Lyle H. Ungar Gary Morris S. Ted Sandler Weichen Wu

ACTIVE LEARNING FOR LOGISTIC REGRESSION Andrew Ian Schein Supervisor: Lyle H. Ungar Which active learning methods can we expect to yield good performance in learning logistic regression classifiers? Addressing this question is a natural first step in providing robust solutions for active learning across a wide variety of exponential models including maximum entropy, generalized linear, loglinea...

Journal: :Statistics in medicine 1996
M Mittlböck M Schemper

Different measures of the proportion of variation in a dependent variable explained by covariates are reported by different standard programs for logistic regression. We review twelve measures that have been suggested or might be useful to measure explained variation in logistic regression models. The definitions and properties of these measures are discussed and their performance is compared i...

Journal: :Computational Statistics & Data Analysis 2005
Pieter C. N. Groenewald Lucky Mokgatlhe

A method for the simulation of samples from the exact posterior distributions of the parameters in logistic regression is proposed. It is based on the principle of data augmentation and a latent variable is introduced, similar to the approach of Albert and Chib (J. Am. Stat. Assoc. 88 (1993) 669), who applied it to the probit model. In general, the full conditional distributions are intractable...

Ali Taghipour, Fateme Azizi Mayvan, Mahsa Mokarram, Mehdi Jabbari Nooghabi, Mohammad Taghi Shakeri,

Background: Regarding the increased risk of developing type 2 diabetes in pre-diabetic people, identifying pre-diabetes and determining of its risk factors seems so necessary. In this study, it is aimed to compare ordinary logistic regression and robust logistic regression models in modeling pre-diabetes risk factors. Methods: This is a cross-sectional study and conducted on 6460 people, over ...

Journal: :Computers & Mathematics with Applications 1999

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید