نتایج جستجو برای: ferromagnetic shape memory alloy
تعداد نتایج: 501075 فیلتر نتایج به سال:
S. H. Chang, S. H. Hsiao, National I-Lan University, Taiwan Cold-rolled and annealed Ti50Ni40Cu10 shape memory alloy possesses a major (110)[001] texture along the rolling direction and a minor {111} γ-fiber texture along the normal direction. The damping capacity of the B2→B19 and B19→B2 martensitic transformation internal friction peaks for the Ti50Ni40Cu10 shape memory alloy was more pr...
Nanofretting behaviors of NiTi shape memory alloy Linmao Qian a, Zhongrong Zhou a,∗, Qingping Sun b, Wenyi Yan c a Tribology Research Institute, National Traction Power Laboratory, Southwest Jiaotong University, Chengdu 610031, China b Department of Mechanical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China c School of Engineering and Information Technology, De...
In order to describe the deformation properties due to the martensitic transformation and the R-phase transformation of TiNi shape memory alloy, a thermomechanical constitutive equation considering the volume fractions of induced phases associated with both transformations is developed. The proposed constitutive equation expresses well the properties of the shape memory effect, pseudoelasticity...
In the field of micromechatronics, microrobotics and specially microfactories, active materials are used in most cases. They permit high resolution and distributed actuation. In this area, Magnetic Shape Memory Alloys (MSMA) are possible candidates. If a lot of studies deal with MSMA, only few applications use them until now. MSMA are attractive active materials because they have large strain (...
We propose a new display for presenting 3D forms using a pin-rod matrix. Due to a long range of movement, it is capable of displaying large-scale, dense objects such as human faces or geographical features. In this work, we use a coil-form Shape Memory Alloy (SMA) as a pinrod actuator. The prototype has a 4×4 pin-rod matrix, with a 120[mm] range of motion (which is longer than previous works), ...
Shape memory alloy (SMA) wires can be embedded in a host material to alter the stiffness or modal response and provide vibration control. The interaction between the embedded SMA and the host material is critical to applications requiring transfer of loads or strain from the wire to the host. Although there has been a significant amount of research dedicated to characterizing and modeling the r...
We have developed two types of shape memory alloy (SMA) actuator and estimated the long-term reliability of SMA microcoils. A tube type tip articulator consists of 4 sets of SMA microcoil (wire diameter: 0.125 mm, coil diameter: 0.5 mm) for driving source and super elastic alloy (SEA) microcoils (wire diameter: 0.1 mm, coil diameter: 0.5 mm) for bias springs, support plates and flexible outer t...
Bend it, shape it, remember it Shape-memory alloys have the useful property of returning to their original shape after being greatly deformed. This process depends on the collective behavior of many small mineral grains in the metal. Using threedimensional x-ray diffraction, Sedmák et al. tracked over 15,000 grains in a nickel-titanium shape-memory alloy as it moved through this transformation,...
In this paper various applications of shape memory alloys (SMA) in bio-medical field based upon their material properties are discussed, and a novel SMA spring actuator design for biopsy is proposed. Design parameters such as spring configuration, wire diameter required for designing the actuator were defined and obtained through experiments. Finally, itconcludeswith the possibility of using SM...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید