نتایج جستجو برای: discriminative sparse representation
تعداد نتایج: 300543 فیلتر نتایج به سال:
We describe a cascaded method for object detection. This approach uses a novel organization of the first cascade stage called “feature-centric” evaluation which re-uses feature evaluations across multiple candidate windows. We minimize the cost of this evaluation through several simplifications: (1) localized lighting normalization, (2) representation of the classifier as an additive model and ...
This paper proposes a nonnegative mix-norm convex optimization method for mitotic cell detection. First, we apply an imaging model-based microscopy image segmentation method that exploits phase contrast optics to extract mitotic candidates in the input images. Then, a convex objective function regularized by mix-norm with nonnegative constraint is proposed to induce sparsity and consistence for...
Dictionary Learning and sparse coding methods have been widely used in computer vision with applications to face and object recognition. A common challenge when performing expression recognition is that face similarities may confound the expression recognition process. An approach to deal with this problem is to learn expression specific dictionaries, so that each atom corresponds to one expres...
Automatic prostate segmentation plays an important role in image guided radiation therapy. However, accurate prostate segmentation in CT images remains as a challenging problem mainly due to three issues: Low image contrast, large prostate motions, and image appearance variations caused by bowel gas. In this paper, a new patient-specific prostate segmentation method is proposed to address these...
Anomaly detection is an important task in hyperspectral imagery (HSI) processing. It provides a new way to find targets that have significant spectral differences from the majority of the dataset. Recently, the representation-based methods have been proposed for detecting anomaly targets in HSIs. It is essential for this type of method to construct a valid background dictionary to distinguish a...
In this paper, we present a novel approach based on the random walk process for finding meaningful representations of a graph model. Our approach leverages the transient behavior of many short random walks with novel initialization mechanisms to generate model discriminative features. These features are able to capture a more comprehensive structural signature of the underlying graph model. The...
Recently, sparse coding has been successfully applied in visual tracking. The goal of this paper is to review the state-of-the-art tracking methods based on sparse coding. We first analyze the benefits of using sparse coding in visual tracking and then categorize these methods into appearance modeling based on sparse coding (AMSC) and target searching based on sparse representation (TSSR) as we...
Due to the rapid advancements of sensory and computing technology, multi-modal data sources that represent same pattern or phenomenon have attracted growing attention. As a result, finding means explore useful information from these has quickly become necessity. In this paper, discriminative vectorial framework is proposed for feature representation in knowledge discovery by employing hashing (...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید