نتایج جستجو برای: discriminant analysis

تعداد نتایج: 2829165  

2009
Darush Yazdanfar

The failure rate of Small and medium enterprises (SMEs), is high in Sweden. Around 6000 SMEs go into bankruptcy every year. This paper attempts to identify the main determinants that are perceived to have contribution to the failure of Swedish SMEs. The research is in principle based on the analysis of panel data matched sample consisting of 1991 bankrupted and 1991 nonbankrupted Swedish SMEs. ...

2003
Samuel Kaski Jaakko Peltonen

We introduce a probabilistic model that generalizes classical linear discriminant analysis and gives an interpretation for the components as informative or relevant components of data. The components maximize the predictability of class distribution which is asymptotically equivalent to (i) maximizing mutual information with the classes, and (ii) finding principal components in the so-called le...

Journal: :Computational Statistics & Data Analysis 2008
Angela Montanari Daniela G. Calò Cinzia Viroli

In the general classification context the recourse to the so-called Bayes decision rule requires to estimate the class conditional probability density functions. In this paper we propose a mixture model for the observed variables which is derived by assuming that the data have been generated by an independent factor model. Independent factor analysis is in fact a generative latent variable mode...

2017
Xuelong Li Mulin Chen Feiping Nie Qi Wang

Linear Discriminant Analysis (LDA) is a popular technique for supervised dimensionality reduction, and its performance is satisfying when dealing with Gaussian distributed data. However, the neglect of local data structure makes LDA inapplicable to many real-world situations. So some works focus on the discriminant analysis between neighbor points, which can be easily affected by the noise in t...

Journal: :Pattern Recognition 2005
Songcan Chen Daohong Li

In this paper, a modified Fisher linear discriminant analysis (FLDA) is proposed and aims to not only overcome the rank limitation of FLDA, that is, at most only finding a discriminant vector for 2-class problem based on Fisher discriminant criterion, but also relax singularity of the within-class scatter matrix and finally improves classification performance of FLDA. Experiments on nine public...

Journal: :Pattern Recognition 2014
Jing Chai Xinghao Ding Hongtao Chen Tingyu Li

Multiple-instance discriminant analysis (MIDA) is proposed to cope with the feature extraction problem in multiple-instance learning. Similar to MidLABS, MIDA is also derived from linear discriminant analysis (LDA), and both algorithms can be treated as multiple-instance extensions of LDA. Different from MidLABS which learns from the bag level, MIDA is designed from the instance level. MIDA con...

Journal: :Biometrika 2015
Peirong Xu J I Zhu Lixing Zhu Y I Li

Linear discriminant analysis has been widely used to characterize or separate multiple classes via linear combinations of features. However, the high dimensionality of features from modern biological experiments defies traditional discriminant analysis techniques. Possible interfeature correlations present additional challenges and are often underused in modelling. In this paper, by incorporati...

2005
Gang Wang Zhihua Zhang Frederick H. Lochovsky

Motivated by the analogies to statistical physics, the deterministic annealing (DA) method has successfully been demonstrated in a variety of application. In this paper, we explore a new methodology to devise the classifier under the DA method. The differential cost function is derived subject to a constraint on the randomness of the solution, which is governed by the temperature T . While grad...

2004
András Kocsor Kornél Kovács Csaba Szepesvári

We propose a new feature extraction method called Margin Maximizing Discriminant Analysis (MMDA) which seeks to extract features suitable for classification tasks. MMDA is based on the principle that an ideal feature should convey the maximum information about the class labels and it should depend only on the geometry of the optimal decision boundary and not on those parts of the distribution o...

Journal: :CoRR 2016
Rémi Flamary Marco Cuturi Nicolas Courty Alain Rakotomamonjy

Wasserstein Discriminant Analysis (WDA) is a new supervised method that can improve classification of high-dimensional data by computing a suitable linear map onto a lower dimensional subspace. Following the blueprint of classical Linear Discriminant Analysis (LDA), WDA selects the projection matrix that maximizes the ratio of two quantities: the dispersion of projected points coming from diffe...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید