نتایج جستجو برای: derivation on banach algebra
تعداد نتایج: 8458555 فیلتر نتایج به سال:
This paper continues the investigation of the rst author begun in part one. The hereditary properties of n-homomorphism amenability for Banach algebras are investigated and the relations between n-homomorphism amenability of a Banach algebra and its ideals are found. Analogous to the character amenability, it is shown that the tensor product of two unital Banach algebras is n-homomorphism amena...
Let X be a non empty normed structure and let s1 be a sequence of X. The functor ( ∑ κ α=0(s1)(α))κ∈N yielding a sequence of X is defined as follows: (Def. 1) ( ∑ κ α=0(s1)(α))κ∈N(0) = s1(0) and for every natural number n holds ( ∑ κ α=0(s1)(α))κ∈N(n + 1) = ( ∑ κ α=0(s1)(α))κ∈N(n) + s1(n + 1). One can prove the following proposition (1) Let X be an add-associative right zeroed right complementa...
for two algebras $a$ and $b$, a linear map $t:a longrightarrow b$ is called separating, if $xcdot y=0$ implies $txcdot ty=0$ for all $x,yin a$. the general form and the automatic continuity of separating maps between various banach algebras have been studied extensively. in this paper, we first extend the notion of separating map for module case and then we give a description of a linear separa...
Let X be a non empty complex normed space structure and let s1 be a sequence of X. The functor ( ∑ κ α=0(s1)(α))κ∈N yielding a sequence of X is defined as follows: (Def. 1) ( ∑ κ α=0(s1)(α))κ∈N(0) = s1(0) and for every natural number n holds ( ∑ κ α=0(s1)(α))κ∈N(n + 1) = ( ∑ κ α=0(s1)(α))κ∈N(n) + s1(n + 1). One can prove the following proposition (1) Let X be an add-associative right zeroed rig...
Generalizing the notion of character amenability for Banach algebras, we study the concept of $varphi$-Connes amenability of a dual Banach algebra $mathcal{A}$ with predual $mathcal{A}_*$, where $varphi$ is a homomorphism from $mathcal{A}$ onto $Bbb C$ that lies in $mathcal{A}_*$. Several characterizations of $varphi$-Connes amenability are given. We also prove that the follo...
In this paper we show that if A is a unital Banach algebra and B is a purely innite C*-algebra such that has a non-zero commutative maximal ideal and $phi:A rightarrow B$ is a unital surjective spectrum preserving linear map. Then $phi$ is a Jordan homomorphism.
in this paper, we nd the relationships between module contractibility of abanach algebra and its ideals. we also prove that module contractibility ofa banach algebra is equivalent to module contractibility of its module uniti-zation. finally, we show that when a maximal group homomorphic image ofan inverse semigroup s with the set of idempotents e is nite, the moduleprojective tensor product ...
A linear mapping T from a subspace E of a Banach algebra into another Banach algebra is called spectrally bounded if there is a constant M ≥ 0 such that r(Tx) ≤ M r(x) for all x ∈ E, where r( · ) denotes the spectral radius. We prove that every spectrally bounded unital operator from a unital purely infinite simple C∗-algebra onto a unital semisimple Banach algebra is a Jordan epimorphism.
If X,Y are normed spaces, let B(X,Y ) be the set of all bounded linear maps X → Y . If T : X → Y is a linear map, I take it as known that T is bounded if and only if it is continuous if and only if E ⊆ X being bounded implies that T (E) ⊆ Y is bounded. I also take it as known that B(X,Y ) is a normed space with the operator norm, that if Y is a Banach space then B(X,Y ) is a Banach space, that ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید