Let X be a non-locally convex F-space (complete metric linear space) whose dual X' separates the points of X. Then it is known that X possesses a closed subspace N which fails to be weakly closed (see [3]), or, equivalently, such that the quotient space XIN does not have a point separating dual. However the question has also been raised by Duren, Romberg and Shields [2] of whether X possesses a...