نتایج جستجو برای: chebyshev spectral collocation method
تعداد نتایج: 1764786 فیلتر نتایج به سال:
In this study, a numerical solution of singular nonlinear differential equations, stemming from biology and physiology problems, is proposed. The methodology is based on the shifted Chebyshev polynomials operational matrix of derivative and collocation. To assess the accuracy of the method, five numerical problems, such as the human head, Oxygen diffusion and Bessel differential equation, were ...
For diffraction gratings with layered refractive index profiles, the Fourier modal method is widely used. However, it is quite expensive to calculate the eigenmodes for each layer, especially when the structure involves absorptive media. We develop an efficient method that avoids the eigenvalue problems based on the so-called Dirichlet-to-Neumann (DtN) map. For each layer, the DtN map is an ope...
If the solution of an integral equation can be expanded in the form of a Chebyshev series, the equation can be transformed into an infinite set of algebraic equations in which the unknowns are the coefficients of the Chebyshev series. The algebraic equations are solved by standard iterative procedures, in which it is not necessary to determine beforehand how many coefficients are significant. T...
Here we propose a new method based on projections for the approximate solution of eigenvalue problems. For an integral operator with a smooth kernel, using an interpolatory projection at Gauss points onto the space of (discontinuous) piecewise polynomials of degree ≤ r−1, we show that the proposed method exhibits an error of the order of 4r for eigenvalue approximation and of the order of 3r fo...
The spectral collocation method is a numerical approximation technique that seeks the solution of a differential equation using a finite series of infinitely differentiable basis functions. This inherently global technique enjoys an exponential rate of convergence and has proven to be extremely effective in computational fluid dynamics. Despite the initial complexity of understanding spectral c...
The wave equation for vectors and symmetric tensors in spherical coordinates is studied under the divergence-free constraint. We describe a numerical method, based on the spectral decomposition of vector/tensor components onto spherical harmonics, that allows for the evolution of only those scalar fields which correspond to the divergence-free degrees of freedom of the vector/tensor. The full v...
In this work, we applied Chebychev spectral collocation method to analyze the unsteady two-dimensional flow of nanofluid in a porous channel through expanding or contracting walls with large injection or suction. The solutions are used to study the effects of various parameters on the flow of the nanofluid in the porous channel. From the analysis, It was established that increase in expansion r...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید