نتایج جستجو برای: cauchy rassias stability
تعداد نتایج: 308801 فیلتر نتایج به سال:
In this paper, we obtain the general solution and the generalized Hyers-Ulam Rassias stability of the functional equation 3(f(x+ 2y) + f(x− 2y)) = 12(f(x + y) + f(x− y)) + 4f(3y)− 18f(2y) + 36f(y)− 18f(x).
won{gil park [won{gil park, j. math. anal. appl., 376 (1) (2011) 193{202] proved the hyers{ulam stability of the cauchy functional equation, the jensen functional equation and the quadraticfunctional equation in 2{banach spaces. one can easily see that all results of this paper are incorrect.hence the control functions in all theorems of this paper are not correct. in this paper, we correctthes...
in this paper, we introduce n-jordan homomorphisms and n-jordan *-homomorphisms and also investigate the hyers-ulam-rassiasstability of n-jordan *-homomorphisms on c*-algebras.
In 1940, Ulam 1 gave a wide ranging talk before the mathematics club of the University of Wisconsin in which he discussed a number of important unsolved problems. Among those was the question concerning the stability of group homomorphisms: “Let G1 be a group and let G2 be a metric group with the metric d ·, · . Given ε > 0, does there exist a δ > 0 such that if a function h : G1 → G2 satisfies...
The Hyers-Ulam stability, the Hyers-Ulam-Rassias stability, and also the stability in the spirit of Gǎvru̧ta for each of the following quadratic functional equations f(x+y)+ f(x−y) = 2f(x)+ 2f(y), f(x+y + z)+ f(x−y)+ f(y − z)+ f(z−x) = 3f(x)+3f(y)+3f(z), f (x+y+z)+f(x)+f(y)+f(z)= f(x+y)+f(y+z)+f(z+x) are investigated. 2000 Mathematics Subject Classification. Primary 39B52, 39B72, 39B82.
The Hyers-Ulam stability problems of functional equations go back to 1940 when S. M. Ulam proposed a question concerning the approximate homomorphisms from a group to a metric group see 1 . A partial answer was given by Hyers et al. 2, 3 under the assumption that the target space of the involved mappings is a Banach space. After the result of Hyers, Aoki 4 , and Bourgin 5, 6 dealt with this pro...
In 1940, Ulam 1 gave a wide ranging talk before the Mathematics Club of the University of Wisconsin in which he discussed a number of important unsolved problems. Among those was the question concerning the stability of group homomorphisms. Let G1 be a group and let G2 be a metric group with the metric d ·, · . Given ε > 0, does there exist a δ > 0 such that if a function h : G1→G2 satisfies th...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید