نتایج جستجو برای: bayesian decision model
تعداد نتایج: 2403947 فیلتر نتایج به سال:
Current reinforcement-learning models often assume simplified decision processes that do not fully reflect the dynamic complexities of choice processes. Conversely, sequential-sampling models of decision making account for both choice accuracy and response time, but assume that decisions are based on static decision values. To combine these two computational models of decision making and learni...
We present a Bayesian decision theoretic approach for developing replacament strategies. In so doing, we consider a semi-parametric model to describe the failure characteristics of systems by specifying a nonparametric form for cumulative intensity function and by taking into account effect of covariates by a parametric form. Use of a gamma process prior for the cumulative intensity function co...
The main purpose of this article is to introduce the evidential reasoning approach, a research methodology, for decision making under uncertainty. Bayesian framework and Dempster-Shafer theory of belief functions are used to model uncertainties in the decision problem. We first introduce the basics of the DS theory and then discuss the evidential reasoning approach and related concepts. Next, w...
We discuss Bayesian approaches to multiple comparison problems, using a decision theoretic perspective to critically compare competing approaches. We set up decision problems that lead to the use of FDR-based rules and generalizations. Alternative definitions of the probability model and the utility function lead to different rules and problem-specific adjustments. Using a loss function that co...
چکیده ندارد.
Decision-bound models of categorization like General Recognition Theory (GRT: Ashby & Townsend, 1986) assume that people divide a stimulus space into different response regions, associated with different categorization decisions. These models have traditionally been applied to empirical data using standard model-fitting methods like maximum likelihood estimation. We implement the GRT as a Bayes...
Decision making under uncertainty is commonly modelled as a process of competitive stochastic evidence accumulation to threshold (the drift-diffusion model). However, it is unknown how animals learn these decision thresholds. We examine threshold learning by constructing a reward function that averages over many trials to Wald’s cost function that defines decision optimality. These rewards are ...
Quantum decision models have been recently proposed to account for findings that have resisted explanation by traditional decision theories. This paper compares quantum versus Markov models of decision making for explaining a puzzling empirical finding from human decision making called dynamic inconsistency – that is the failure of decision makers to carry out their planned decisions. A large d...
In this paper, a Bayesian hierarchical model is used to anaylze the female breast cancer mortality rates for the State of Missouri from 1969 through 2001. The logit transformations of the mortality rates are assumed to be linear over the time with additive spatial and age effects as intercepts and slopes. Objective priors of the hierarchical model are explored. The Bayesian estimates are quite ...
Linguistic decision tree (LDT) [7] is a classification model based on a random set based semantics which is referred to as label semantics [4]. Each branch of a trained LDT is associated with a probability distribution over classes. In this paper, two hybrid learning models by combining linguistic decision tree and fuzzy Naive Bayes classifier are proposed. In the first model, an unlabelled ins...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید