نتایج جستجو برای: arsenic iii
تعداد نتایج: 274476 فیلتر نتایج به سال:
Arsenic-contaminated soil is one of the major arsenic sources for drinking water. Phytoremediation, an emerging, plant-based technology for the removal of toxic contaminants from soil and water, has been receiving renewed attention. Although a number of plants have been identified as hyperaccumulators for the phytoextraction of a variety of metals, and some have been used in field applications,...
The presence of elevated concentration of arsenic in water sources is considered to be health hazard globally. Calcination process is known to change the surface efficacy of the adsorbent. In current study, five adsorbent composites: uncalcined and calcined Fe3O4-HBC prepared at different temperatures (400°C and 1000°C) and environment (air and nitrogen) were investigated for the adsorptive rem...
Arsenic is an inorganic pollutant that, depending on oxidation–reduction and pH level conditions, may be found in natural waters two variants: As(III) As(V). Any treatment to effectively remove arsenic from water will conditioned by the presence of one or both variants. In this context, study assesses using electrochemically produced Fe(VI) with Fe(III) As(III), As(V), their combinations Synthe...
Even though epidemiological studies have identified arsenic compounds as carcinogenic to humans, they are not mutagenic in bacterial and mammalian test systems. However, they increase the mutagenicity and clastogenicity in combination with other DNA damaging agents and there are indications of inhibition of DNA repair processes. We investigated the effect of arsenic(III) on nucleotide excision ...
Contamination of water and sediment with arsenic (As) in a highly industrialized area of Pohang City, Korea was investigated, with emphasis on in situ bioaccumulation of arsenicals by various aquatic organisms. Species- and tissue-specific concentrations of arsenicals were determined by use of HPLC-ICP/MS and μ-X-ray absorption near-edge structure (μ-XANES). Concentrations of arsenic in aquatic...
*Correspondence: Emilia Morallón, Departamento de Química Física e Instituto Universitario de Materiales, University of Alicante, P.O. Box 99, San Vicente del Raspeig E-03080, Spain e-mail: [email protected] The adsorption and electroadsorption of arsenic from a natural water has been studied in a filter-press electrochemical cell using a commercial granular activated carbon as adsorbent and Pt/Ti...
As(III) specifically interacts with an arsenic-binding aptamer to form an As(III)-aptamer complex, so that the following cationic polymer can aggregate gold nanoparticles (AuNPs) and cause a remarkable change in color, which enables the colorimetric detection of As(III) with high selectivity and a detection limit of 5.3 ppb.
We present a compact portable biosensor to measure arsenic As(III) concentrations in water using Escherichia coli bioreporter cells. Escherichia coli expresses green fluorescent protein in a linearly dependent manner as a function of the arsenic concentration (between 0 and 100 μg/L). The device accommodates a small polydimethylsiloxane microfluidic chip that holds the agarose-encapsulated bact...
A combination of solid phase extraction (SPE) columns was used for selective separation of water-soluble arsenic species: arsenite, arsenate, monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA). The SPE columns, namely AnaLig TE-01 (TE-01), AnaLig AN-01 Si (AN-01) and AnaLig As-01 PA (As-01), contain immobilized macrocyclic material as the sorbent and commonly known as molecular recogni...
The chemical speciation of arsenic in sediments and porewaters of aquifers is the critical factor that determines whether dissolved arsenic accumulates to potentially toxic levels. Sequestration of arsenic in solid phases, which may occur by adsorption or precipitation processes, controls dissolved concentrations. We present synchrotron x-ray absorption spectra of arsenic in shallow aquifer sed...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید