نتایج جستجو برای: 41 پلیسولفون عامل سازگاری pdms غشاهای نانوکامپوزیت
تعداد نتایج: 164702 فیلتر نتایج به سال:
The purpose of this work was to perform the initial evaluation of primary diagnostic monitor (PDM) characteristics following the implementation of New York City quality assurance (NYC QA) regulations on January 1, 2016, and compare the results of the QA measurements performed by an external photometer and the PDM manufacturer's built-in photometer. TG-18 and Society of Motion Picture and Televi...
Rapid prototyping of microfluidic systems using a combination of double-sided tape and PDMS (polydimethylsiloxane) is introduced. PDMS is typically difficult to bond using adhesive tapes due to its hydrophobic nature and low surface energy. For this reason, PDMS is not compatible with the xurography method, which uses a knife plotter and various adhesive coated polymer tapes. To solve these pro...
Control of surface properties in microfluidic systems is an indispensable prerequisite for successful bioanalytical applications. Poly(dimethylsiloxane) (PDMS) microfluidic devices are hampered from unwanted adsorption of biomolecules and lack of methods to control electroosmotic flow (EOF). In this paper, we propose different strategies to coat PDMS surfaces with poly(oxyethylene) (POE) molecu...
We firstly introduce a facile method for the site-specific direct physical exfoliation of few-layer graphene sheets from cheap and easily enlargeable graphite grown on a Ni foil using an optimized polydimethylsiloxane (PDMS) stamp. By decreasing the PDMS cross-linking time, the PDMS elasticity is reduced to ∼52 kPa, similar to that of a typical gel. As a result of this process, the PDMS becomes...
Poly(dimethylsiloxane) (PDMS) microfluidic devices were prepared from different ratios of “curing agent” (which contains silicon hydride groups) to “base” (which contains vinyl-terminated noncross-linked PDMS), to determine the effect of this ratio on electroosmotic flow (EOF). In fabricating devices for this purpose, a novel method for permanently enclosing PDMS channels was developed. As a su...
PDMS (polydimethylsiloxane) elastomer is widely used in MEMS. However, PDMS is non-conductive and as a result is used in mostly structural applications. We report methods for monolithic integration of conductive and non-conductive PDMS for realizing wholly polymer-based devices with embedded elastomer wires, electrodes, heaters, and sensors. In this work we demonstrate elastomer strain gauges, ...
Control of the wrinkle structure on surface-reformed poly(dimethylsiloxane) via ion-beam bombardment
We investigated the surface reformation of poly(dimethylsiloxane) (PDMS) elastomers by means of ion beam bombardment for fabricating wrinkle structures. Oxidation on the PDMS surface formed a silica-like outer layer that interacted with the inner PDMS layer, leading to the formation of wrinkle structures that minimized the combined bending energy of the outer layer and stretching energy of the ...
Polydimethylsiloxane (PDMS) surface consisting irregular pattern was investigated to develop cell-based biochip using PDMS. PDMS surface was modified with nano- and micro-combined patterns using surface deformation technology. Hydrophobicity of nano-patterned PDMS surface was sustained. Nevertheless it has irregular patterns consisting of micro- and nano-patterns. According to atomic force micr...
ساخت غشاهای تبادل یون با خواص شیمیایی و فیزیکی مناسب، گام مهمی در به کارگیری و گسترش روز افزون این نوع از غشاها خواهد بود. انتخاب پلیمر مناسب پایه غشا، اختلاط پلیمر های پایه، تغییر نوع و میزان غلظت گروه های عامل، استفاده از مواد افزودنی معدنی مانند مواد جذب کننده فعال سطحی و نانو ذرات در ساختار غشاها، اصلاح سطحی و نیز پراکندگی مناسب و بهتر گروه های عامل غشاهای تبادل یون، از جمله عوامل مهم و برج...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید