Bn : (∀x1, . . . , xn)( if all xi are distinct then the subgraph induced on x1, . . . , xn is 3-colorable). By Erdős-DeBruijn, the countable set of axioms Bn (n = 1, 2, . . . ) defines 3-colorability. To show that 3-colorability is not finitely axiomatizable, we show the (apparently) stronger result that non-3-colorability is not axiomatizable. To do this, we use ultraproducts. It suffices to c...