نتایج جستجو برای: 2 independent set
تعداد نتایج: 3339134 فیلتر نتایج به سال:
Rough set is mainly concerned with the approximations of objects through an equivalence relation on a universe. Matroid is a combinatorial generalization of linear independence in vector spaces. In this paper, we define a parametric set family, with any subset of a universe as its parameter, to connect rough sets and matroids. On the one hand, for a universe and an equivalence relation on the u...
A set D of vertices in a graph G is 2-dominating if every vertex not in D has at least two neighbors in D and locating-dominating if for every two vertices u, v not in D, the sets N(u) ∩ D and N(v) ∩ D are non-empty and different. The minimum cardinality of a 2-dominating set (locatingdominating set) is denoted by γ2(G) (γL(G)). It is known that every tree T with n ≥ 2 vertices, leaves, s suppo...
In this article, we proved the following results. Let L(F (ni)) be the free group factor on ni generators and λ(gi) be one of standard generators of L(F (ni)) for 1 ≤ i ≤ N . Let Ai be the abelian von Neumann subalgebra of L(F (ni)) generated by λ(gi). Then the abelian von Neumann subalgebra ⊗i=1Ai is a maximal injective von Neumann subalgebra of ⊗i=1L(F (ni)). When N is equal to infinity, we o...
In this correspondence, we propose some new designs of 2 2 unitary space-time codes of sizes 6; 32; 48; 64 with best known diversity products (or product distances) by partially using sphere packing theory. In particular, we present an optimal 2 2 unitary space-time code of size 6 in the sense that it reaches the maximal possible diversity product for 22 unitary space-time codes of size 6. The ...
We study the Maximum Independent Set of Rectangles (MISR) problem: given a collection R of n axis-parallel rectangles, find a maximum-cardinality subset of disjoint rectangles. MISR is a special case of the classical Maximum Independent Set problem, where the input is restricted to intersection graphs of axis-parallel rectangles. Due to its many applications, ranging from map labeling to data m...
We study the following independent set reconfiguration problem, called TAR-Reachability: given two independent sets I and J of a graph G, both of size at least k, is it possible to transform I into J by adding and removing vertices one-by-one, while maintaining an independent set of size at least k throughout? This problem is known to be PSPACE-hard in general. For the case that G is a cograph ...
In this paper we consider graphs which have no k vertex-disjoint cycles. For given integers k, let f (k, ) be the maximum order of a graph G with independence number (G) , which has no k vertex-disjoint cycles. We prove that f (k, ) = 3k + 2 − 3 if 1 5 or 1 k 2, and f (k, ) 3k + 2 − 3 in general. We also prove the following results: (1) there exists a constant c (depending only on ) such that f...
For any finite dimensional C∗-algebra A , we give an endomorphism Φ of the hyperfinite II1 factor R of finite Jones index such that: ∀ k ∈ N, Φk(R)′ ∩R = ⊗kA. The Jones index [R : Φ(R)] = (rank (A)), here rank (A) is the dimension of the maximal abelian subalgebra of A.
A dominating set S of a graph G is a locating-dominating-set, LD-set for short, if every vertex v not in S is uniquely determined by the set of neighbors of v belonging to S. Locating-dominating sets of minimum cardinality are called LDcodes and the cardinality of an LD-code is the location-domination number, λ(G). An LD-set S of a graph G is global if it is an LD-set for both G and its complem...
Let G = (V,E) be a graph. A set S ⊆ V is a restrained dominating set if every vertex in V − S is adjacent to a vertex in S and to a vertex in V − S. The restrained domination number of G, denoted by γr(G), is the minimum cardinality of a restrained dominating set of G. A unicyclic graph is a connected graph that contains precisely one cycle. We show that if U is a unicyclic graph of order n, th...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید