نتایج جستجو برای: کلاس بند svm

تعداد نتایج: 36471  

2005
Mark A. Davenport

Standard classification algorithms aim to minimize the probability of making an incorrect classification. In many important applications, however, some kinds of errors are more important than others. In this report we review cost-sensitive extensions of standard support vector machines (SVMs). In particular, we describe cost-sensitive extensions of the C-SVM and the ν-SVM, which we denote the 2...

Journal: :International Research Journal of Computer Science 2017

2012
Ariadna Quattoni Xavier Carreras Antonio Torralba

Since their introduction, ranking SVM models [11] have become a powerful tool for training content-based retrieval systems. All we need for training a model are retrieval examples in the form of triplet constraints, i.e. examples specifying that relative to some query, a database item a should be ranked higher than database item b. These types of constraints could be obtained from feedback of u...

Journal: :JCIT 2010
Fengxia Wang Xiao Chang

In recent years, the algorithms of learning to rank have been proposed by researchers. However, in information retrieval, instances of ranks are imbalanced. After the instances of ranks are composed to pairs, the pairs of ranks are imbalanced too. In this paper, a cost-sensitive risk minimum model of pairwise learning to rank imbalanced data sets is proposed. Following this model, the algorithm...

Journal: :Neurocomputing 2009
Zhizheng Liang Youfu Li

Most algorithms of support vector machines (SVMs) operate in a batch mode. However, when the samples arrive sequentially, batch implementations of SVMs are computationally demanding due to the fact that they must be retrained from scratch. This paper proposes an incremental SVM algorithm that is suitable for the problems of sequentially arriving samples. Unlike previous SVM techniques, this new...

2012
Hwanjo Yu Sungchul Kim

Support Vector Machines(SVMs) have been extensively researched in the data mining and machine learning communities for the last decade and actively applied to applications in various domains. SVMs are typically used for learning classification, regression, or ranking functions, for which they are called classifying SVM, support vector regression (SVR), or ranking SVM (or RankSVM) respectively. ...

2004
Qingzhao Tan Xiaoyong Chai Wilfred Ng Dik Lun Lee

The information on the World Wide Web is growing without bound. Users may have very diversified preferences in the pages they target through a search engine. It is therefore a challenging task to adapt a search engine to suit the needs of a particular community of users who share similar interests. In this paper, we propose a new algorithm, Ranking SVM in a Co-training Framework (RSCF). Essenti...

Journal: :Expert Syst. Appl. 2007
Chih-Hung Wu Gwo-Hshiung Tzeng Yeong-Jia Goo Wen-Chang Fang

Two parameters, C and r, must be carefully predetermined in establishing an efficient support vector machine (SVM) model. Therefore, the purpose of this study is to develop a genetic-based SVM (GA-SVM) model that can automatically determine the optimal parameters, C and r, of SVM with the highest predictive accuracy and generalization ability simultaneously. This paper pioneered on employing a ...

2012
Yashar Maali Adel Al-Jumaily Leon Laks

In this paper Self-Advising SVM, a new proposed version of SVM, is investigated for sleep apnea classification. Self-Advising SVM tries to transfer more information from training phase to the test phase in compare to the traditional SVM. In this paper Sleep apnea events are classified to central, obstructive or mixed, by using just three signals, airflow, abdominal and thoracic movement, as inp...

ژورنال: :صوت و ارتعاش 0
منصوره کرمی کارشناس‏ارشد هوش مصنوعی دانشگاه صنعتی شریف پریا جمشیدلو کارشناس‏ارشد زبان شناسی رایانشی دانشگاه صنعتی شریف حسین صامتی دانشیار دانشکدۀ کامپیوتر دانشگاه صنعتی شریف

بیان احساس در ارتباطات روزمره از جایگاه ویژه ای برخوردار است. از جمله بسترهای نمود احساس، گفتار است. از این رو، یکی از جنبه های مهم در طبیعی سازی ارتباط میان انسان و ماشین، تشخیص حس گفتار و تولید بازخورد متناسب با احساس درک شده است. باوجود پیشرفت های گسترده در حوزه پردازش گفتار، استخراج و درک احساس پنهان در گفتار انسان، همچون خشم، شادی و جز این ها، از یک سو و تولید گفتار احساسی مناسب از سوی دیگ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید