نتایج جستجو برای: معادله انتگرال دیفرانسیل سهموی
تعداد نتایج: 16312 فیلتر نتایج به سال:
هدف این پژوهش، به دست آوردن طرح های تفاضلات متناهی با مرتبه دقت بالا برای معادله دیفرانسیل جزئی معکوس سهموی است. با حل کردن چنین معادله ای پارامتر کنترل مجهول را به دست می آوریم. به همین منظور طرح های تفاضلات متناهی صریح، ضمنی، کرانک-نیکلسون و کراندال را در نظر گرفته و مرتبه دقت و ناحیه پایداری آن ها را مورد بررسی قرار می دهیم. در ادامه با استفاده از تابع تبدیل معادله دیفرانسیل جزئی را تغییر دا...
معادلات دیفرانسیل کسری ابزار مناسبی برای مدل سازی مسائل فیزیکی دنیای واقعی می باشند، اما بیشتر معادلات دیفرانسیل کسری دارای جواب تحلیلی دقیق نمی باشند و بنابراین روش های تقریبی توسعه یافته اند. در این پایان نامه، ما یکی از این روش ها را معرفی می کنیم. ابتدا معادلات انتگرال ولترا با هسته جدایی پذیر توسط روش تبدیل دیفرانسیلی حل شده اند. جواب تقریبی این معادله به آسانی به فرم یک سری محاسبه می ...
در این مقاله، حل عددی معادلات انتگرال فردهلم فازی نوع دوم با بهکارگیری موجک چبیشف نوع دوم را مورد بررسی قرار میدهیم. پس از بیان تعاریف مقدماتی مرتبط با معادلات فازی و نیز ویژگیهای اولیه موجک چبیشف نوع دوم، فرم پارامتری معادلات انتگرال فردهلم فازی نوع دوم، که در واقع دستگاهی از معادلات انتگرال فردهلم خطی در حالت غیرفازی است را معرفی مینماییم. سپس با بهکارگیری موجک چبیشف نوع دوم و به...
در این پایان نامه به حل برخی معادلات انتگرال-دیفرانسیل پرداخته می شود. در فصل اول برخی تعاریف و قضایای اولیه مورد نیاز در فصل های آتی بیان می شود. در فصل دوم به طور مختصر در مورد حساب دیفرانسیل و انتگرال کسری صحبت می کنیم، انتگرال ریمان-لیوویل کسری را تعریف کرده و همچنین به تعریف برخی مشتق های کسری از جمله مشتق کسری ریمان-لیوویل و مشتق کسری کاپوتو می پردازیم. در فصل سوم وجود ویکتایی جواب در معا...
روش تجزیه آدومین درحل بسیاری از معادلات دیفرانسیل خطی و غیر خطی، معادلات انتگرال و... به کار می رود که روشی کارا، ساده و معتبر است. دراین روش جواب معادلات به صورت یک چند جمله ای تقریب زده می شود. معادله دیفرانسیل دافینگ نمونه ای از معادلات غیر خطی است که در زمینه های مختلف علوم مانند فیزیک و... مطرح می شود. در این پایان نامه ابتدا به حل عددی معادله دافینگ با استفاده از روش تجزیه آدومین تکراری پ...
در پایان نامه حاضر نوعی خاص از معادلات یعنی معادلات دیفرانسیل جزئی سهموی با استفاده از b-spline ها مورد برسی قرار میگیرد سپس یک روش جدید برای حل این نوع معادلات بیان میشود . در پایان نیز روش حاضر با یکی از روش های موجود مقایسه شده و نتایج عددی در دو جدول بیان میشود.
در این پایان نامه به بیان و بررسی قضیه نقطه ثابت باناخ بر روی نگاشت انقباضی از نوع پاتا می پردازیم وکاربردی از این قضیه را در اثبات وجود جواب معادلات دیفرانسیل و معادلات انتگرال بیان می کنیم. همچنین پایداری برخی از معادلات انتگرال از جمله معادله انتگرال از نوع ولترا را اثبات می کنیم.
در این رساله ابتدا به معرفی عملگر خودالحاق l می پردازیم که به صورت l =d/dx (p(x) d/dx) + r(x); lu + φ(x)u = 0. مشخص می شود، و مسئله مقدار ویژه lu + λp(x) = 0, x ∋ (a,b), (1) با شرایط مرزی مجزا α1u(a) + α2u′(a) = 0 |α1| + |α2 > 0, β1u(b) + β2u′(b) = 0 |β1| + |β2| > 0. را مسئله ی اشتورم - لیوویل نامیده و آن را به دو صورت منظم و منفرد مورد بررسی قرار می دهیم. ثابت می کنیم که اگر مقادیر وی...
در این پایان نامه از روش گسسته سازی زمانی برای حلمعادلات انتگرال - دیفرانسیل سهموی با جمله ی حافظه از نوع پیچش استفاده می شود. با به کار گیری این روش, مساله به مجموعه ای متناهی از معادلات بیضوی با ضرایب مختلط تبدیل می شود که به صورت موازی حل می شوند. برای مسایلی با متغیر مکان, ترکیبی از روش کسسته سازی زمانی و روش عناصر متناهی استفاده می شود تا یک روش کاملا گسسته به دست آید. به علاوه تخمین های خ...
در این مقاله برهانی مقدماتی برای فرمول مشهوری که نشان می دهد مقدار سری همساز متناوب برابر با log2 است، ارائه می شود. اثبات بر مبنای مفاهیم ساده حساب دیفرانسیل و انتگرال است.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید