نتایج جستجو برای: مدل عصبی فیتزهاگ ناگومو
تعداد نتایج: 129194 فیلتر نتایج به سال:
مدلسازی نوسانهای زمانی آب زیرزمینی، در مدیریت حوزههای آبریز و ایجاد تعادل در عرضه و تقاضای آب اهمیت زیادی دارد. در سالهای اخیر استفاده از تحلیل موجک برای تجزیۀ سریهای زمانی و ترکیب آن با شبکههای عصبی بهصورت گستردهای در مدلسازی پدیدههای هیدرولوژیکی بهکار رفته است. در این تحقیق، توانایی مدل ترکیبی موجک- شبکۀ عصبی پویا برای پیشبینی یک ماه آیندۀ عمق آب زیرزمینی ارزیابی شده و این مدل با...
سابقه و هدف: شوری خاک عامل مهم در کاهش عملکرد مزارع نیشکر واقع در جنوب غربی ایران میباشد. بنابراین مطالعه و پایش این عامل در زمینهای تحت کشت نیشکر، امری لازم و ضروری میباشد. اما با توجه به وسعت زیاد مناطق زیر کشت نیشکر و تعدد زیاد مزرعهها، مطالعه و پایش این عوامل در هر مزرعه بسیار وقتگیر و پرهزینه است. استفاده از مدلهای کامپیوتری با توجه به سرعت بالا و هزینه کم، بهعنوان گزینهای مناسب جه...
در پژوهش حاضر ابتدا مقایسه ای بین عملکرد مدل های گردش عمومی جو (gcm) در شبیه سازی پارامتر های اقلیمی دمای میانگین و بارش صورت گرفت. در این مرحله عملکرد 6 مدل گردش عمومی جو به نام های hadcm3، cgcm3، csiromk3 (از مجموعه مدل های ar4) و cgcm1، gfdl30، ncarpcm (از مجموعه مدل های atr) در شبیه سازی پارامتر های اقلیمی دمای میانگین و بارش حوزه سزار با استفاده از شبکه عصبی مصنوعی (ann) مورد ارزیابی قرار ...
امروزه ، پیش بینی متغیر های کلان اقتصادی از اهمیت ویژه ای برای سیاستگذاران و سایر واحد های اقتصادی برخوردار است. در نتیجه ، دردهه های اخیر ، مدل های پیش بینی گوناگونی توسعه یافته و به رقابت با یکدیگر پرداخته اند. اخیراً به موازات مدل های متداول قبلی مانند مدل های ساختاری و سری زمانی ، مدل های دیگری تحت عنوان شبکه های عصبی مصنوعی در زمینه پیش بینی متغیر های مالی و پولی بکار گرفته شده اند. این م...
در سالهای اخیر مدیریت سود در پژوهش های دانشگاهی توجه زیادی را به خود جلب کرده است. هدف این پژوهش پیش بینی مدیریت سود از طریق اقلام تعهدی اختیاری مبتنی بر مدل جونز تعدیل شده است. در این پژوهش از دو مدل شبکه عصبی مصنوعی و مدل ترکیبی الگوریتم ژنتیک – شبکه عصبی به عنوان الگوی موفقجهت پیش بینی مدیریت سود مبتنی بر جونز تعدیل شده در بورس اوراق بهادار تهران استفاده شده است. نمونه مورد استفاده در این پژ...
مدل سازی پیش بینی متغیرهای مالی و اقتصادی با توجه به رفتار متغیرها، روش های گوناگونی دارد. تحقیق حاضر، چگونگی پیش بینی بازده سهام در بورس اوراق بهادار تهران را با دو مدل آربیتراژ و شبکه های عصبی مصنوعی مورد آزمون قرار داده است. برای این منظور از اطلاعات روزانه شاخص بازده نقدی و قیمت به عنوان متغیر وابسته و از اطلاعات روزانه قیمت سکه بهار آزادی، حجم معاملات کل بازار و قیمت دلار به عنوان متغیرهای...
این مقاله با هدف معرفی یک الگوی مناسب جهت پیشبینی شاخص بازدهی بورس اوراق بهادار تهران صورت پذیرفته است. دادههای مورد استفاده در این پژوهش به صورت روزانه و شامل بازهی زمانی پنجم فروردین 1388 تا سیام آبان 1390 که مشتمل بر 616 مشاهده بوده که جهت مجزا سازی پیشبینیهای داخل نمونهای و خارج از نمونهای، از تقریباً 90% از مشاهدات (556 مشاهده) جهت تخمین ضرایب مدل و از مابقی (60 مشاهده) جهت انجام پی...
امروزه، سرمایه گذاری در بورس، بخش مهمی از اقتصاد کشور را تشکیل می دهد. به همین دلیل پیش بینی قیمت سهام برای سهامداران از اهمیت خاصی برخوردار شده است تا بتوانند بالاترین بازده را از سرمایه گذاری خود کسب کنند. از سوی دیگر، شاخص قیمت سهام نشان¬دهنده وضعیت کلی بازار سهام است و می تواند به پیش بینی سهامداران جهت سرمایه گذاری کمک کند. اغلب در سالهای گذشته از روشهای کلاسیک برای پیش بینی قیمت سهام استف...
بخش های خانگی و تجاری بیشترین سهم مصارف گاز طبیعی در کشور را به خود اختصاص داده است. بنابراین، پیش بینی میزان مصارف این دو بخش برای شرکت ملی گاز ایران بسیار حائز اهمیت است. در این مقاله، برای مصارف خانگی و تجاری گاز طبیعی شهر اصفهان ساختار مناسبی از مدل شبکه عصبی انتخاب و طراحی شده است. برای یافتن یک ساختار مناسب شبکه عصبی، سه ساختار متفاوت با نام های دینامیک، هرس کامل و شبکه شعاع براساس تابع ب...
امروزه شبکه های عصبی مصنوعی جایگاه ویژه ای در حیطه مالی پیدا کرده است. پژوهش حاضر به دنبال یافتن روش بهتر برای ساخت و آموزش شبکه های عصبی مصنوعی است که منجر به پیش بینی دقیقتر در موضوع ورشکستگی شود. در این میان سه شبکه عصبی از نوع توابع شعاع مدار ساخته شد که به صورت جداگانه توسط متغیرهای مدل آلتمن (1983)، اسمایوسکی (1984) و ترکیبی آموزش داده شدند. پس از سنجش توانایی سه مدل در پیش بینی ورشکستگی...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید