نتایج جستجو برای: مدل ترکیبی شبکه عصبی

تعداد نتایج: 163366  

شکست سدهای خاکی از چالشهای بزرگ مهندسی عمران به شمار میرود که یکی از عمده ترین علل وقوع آن، تراوش کنترل نشده از هسته و پی سد میباشد. از این رو تحلیل تراوش، از مسائل بسیار مهم در طی مراحل طراحی، ساخت و بهره برداری از این نوع سدها است. در این راستا بررسی هد پیزومتریک یکی از اولین مراحل بررسی تراوش میباشد؛ در تحقیق حاضر هد پیزومتریک سد خاکی ستارخان با استفاده از مدلهای جعبه سیاه هوش مصنوعی و جعبه ...

بهرامی, وحید, تشنه لب, محمد, منثوری, محمد,

  در این مطالعه، کنترل کننده شبکه عصبی راف مبتنی بر توابع شعاعی مدل مرجع با آموزش پسخور خطا برای کلاسی از سیستم های غیرخطی در حضور عدم قطعیت محدود ارائه می گردد. کنترل کننده ارائه شده به فرم ترکیبی، شامل کنترل کننده شبکه عصبی راف مبتنی بر توابع شعاعی و کنترل کننده کلاسیک می باشد. به دلیل استفاده از کنترل کننده کلاسیک در کنار کنترل کننده هوشمند، می توان انتظار محدود بودن پاسخ حالت گذرا را داش...

سابقه و هدف: پیش‌بینی دقیق تولید شیر یکی از ملزومات مدیریت دامپروری و مدل‌سازی درآمد دامداران در تجزیه و تحلیل های هزینه-فایده می‌باشد. بطوری که پیش‌بینی دقیق رکوردهای آینده می‌تواند طول دوره رکوردبرداری را کاهش دهد. برآوردهای زودهنگام ارزش اصلاحی گاوهای نر با استفاده از رکوردهای بخشی از دوره شیردهی می‌تواند باعث کاهش فاصله نسل و بیشتر شدن شدت انتخاب و پیشرفت ژنتیکی گردد. مدل خطی یکی از روشهای ...

با توجه به اهمیت پیش‌بینی جریان رودخانه در مدیریت منابع‌ آب روش‌های مختلفی برای مدل کردن جریان رودخانه‌ها بکار برده می‌شوند. تا بتوان با بکارگیری این مدل در مدیریت خشکسالی و سیلاب خسارات ناشی از آن‌ها را به حداقل ممکن رساند. در این مطالعه نیز برای پیش‌بینی سری‌ زمانی جریان روزانه ایستگاه ونیار، با توجه به ویژگی‌های غیرخطی مقیاس‌های زمانی چندگانه، مدل هیبرید شبکه عصبی و موجک پیشنهاد شده است. برا...

شبکه های عصبی مصنوعی، یک ابزار قدرتمند برای تجزیه و تحلیل داده ها و مدل سازی روابط غیر خطی به حساب می آید که استفاده از آن طی سال های گذشته در اقتصاد کلان گسترش یافته است. در این مطالعه، کارایی یک مدل شبکه عصبی با یک مدل خطی رگرسیون برای پیش بینی نرخ رشد اقتصادی در ایران مقایسه می شود. برای این منظور ابتدا، یک مدل رگرسیون رشد برای دوره 1315-1373 برآورد شده و سپس با همان مجموعه رگرسورها (متغیرها...

ژورنال: :هوش محاسباتی در مهندسی برق 0
سید عابد حسینی دانشگاه آزاد اسلامی واحد مشهد محمد رضا اکبرزاده توتونچی دانشگاه فردوسی مشهد

این مقاله یک ترکیب هم­افزای شبکه عصبی آشوب‎گون با پسخوراند خودی، نمای لیاپانوف و تبرید تدریجی را برای حل مسائل بهینه‎سازی ترکیبی نظیر فروشنده دوره گرد (tsp) پیشنهاد می‎دهد. برخلاف شبکه‎های عصبی مصنوعی که با دینامیک گرادیان نزولی به سمت نقطه تعادل پایدار همگرا می‎شوند، شبکه­های عصبی آشوبی دینامیک­های فضایی - زمانی غنی‎تر و ساختار پیچیده‎تری دارند؛ بنابراین انتظار می­رود شبکه عصبی آشوبی توان زیاد...

امید طیاری محسن ایراندوست هدایت فهمـی

در شبکه‌های عصبی مصنوعی (ANN) روش‌های موجود آموزش و واسنجی عصبی بر اساس ساختار پرسپترون چندلایه‌ای می باشد، لیکن این روش‌ها دارای مشکلات ناشی از عدم همگرایی در روش‌های یادگیری، عدم ثبات اوزان شبکه در شرایطی که طیف داده های ورودی دارای انحراف معیار بزرگ بوده و بالاخره نیاز به داده و اطلاعات فراوان جهت آموزش شبکه می باشند. برای غلبه بر مشکلات فوق در این تحقیق روش جدید ترکیبی شبکه عصبی مصنوعی – به...

فرآیند نورد در کانال همسان زاویه‌دار از فرآیندهای تغییر فرم شدید پلاستیک جهت دستیابی به ساختار فوق‌ریز دانه می‌باشد. در این مقاله به بررسی این فرآیند و تأثیر پارامترهای آن به کمک مدل‌سازی شبکه‌ی عصبی مصنوعی و رگرسیون غیرخطی پرداخته‌شده است. به‌منظور پیش‌بینی خواص مکانیکی نمونه آلومینیم 6061 حاصل از فرآیند نورد در کانال همسان زاویه‌دار از شبکه عصبی پس انتشار پیش‌خور استفاده‌شده است. پارامترهای ز...

ژورنال: :مجله اپیدمیولوژی ایران 0
آذر اسد آبادی a asadabadi msc, department of biostatistics & epidemiology, school of health, kerman university of medical sciences, iranکارشناس ارشد آمار زیستی، گروه آمار زیستی و اپیدمیولوژی دانشکده بهداشت و مرکز تحقیقات مدل سازی در سلامت دانشگاه علوم پزشکی کرمان، کرمان، ایران عباس بهرامپور a bahrampour professor, phd, modeling of health research center, department of biostatistics & epidemiology, school of health, kerman university of medical sciences, iranاستاد گروه آمار زیستی و اپیدمیولوژی دانشکده بهداشت و مرکز تحقیقات مدل سازی در سلامت دانشگاه علوم پزشکی کرمان، کرمان، ایران علی اکبر حقدوست aa haghdoost associate professor, phd, modeling of health research center, department of biostatistics & epidemiology, school of health, kerman university of medical sciences, iranاستاد گروه آمار زیستی و اپیدمیولوژی دانشکده بهداشت و مرکز تحقیقات مدل سازی در سلامت دانشگاه علوم پزشکی کرمان، کرمان، ایران

مقدمه و اهداف: در سال‎های اخیر، توجه قابل ملاحظه‎ای به مدل‎های آماری برای طبقه‎بندی داده‎های پزشکی با توجه به بیماری‎های مختلف و پیامدهای آن‎ها شده است. شبکه‎های عصبی مصنوعی به دلیل عدم نیاز به پیش فرض با موفقیت برای تشخیص الگو و پیش‎بینی در برخی از مطالعه های بالینی استفاده شده‎اند. هدف از این مطالعه، مقایسه دو مدل آماری شبکه عصبی مصنوعی و رگرسیون لجستیک برای پیش بینی بقای بیماران مبتلا به سرط...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید