نتایج جستجو برای: عصبی anfis

تعداد نتایج: 17982  

Journal: :JILSA 2010
K. Naga Sujatha K. Vaisakh

A new speed control approach based on the Adaptive Neuro-Fuzzy Inference System (ANFIS) to a closed-loop, variable speed induction motor (IM) drive is proposed in this paper. ANFIS provides a nonlinear modeling of motor drive system and the motor speed can accurately track the reference signal. ANFIS has the advantages of employing expert knowledge from the fuzzy inference system and the learni...

2014
N. Dharani K. Hemalatha S. Ravindrakumar

This paper describes the application of Adaptive Neuro-Fuzzy Inference System (ANFIS) model with SVD for classification of Electrocardiogram(ECG) signals into one of the few known categories, and to arrive at a diagnostic decision regarding the condition of the patient. The proposed architecture is a combination of Singular Value Decomposition (SVD) filtering method and ANFIS model. The ECG sig...

Journal: :Journal of Intelligent and Fuzzy Systems 2014
M. Gunasekaran K. S. Ramaswami

This paper addresses about an approach that suggests for stock portfolio optimization using the combination of Adaptive Neuro-Fuzzy Inference System (ANFIS) and Capital Asset Pricing Model (CAPM). Stock portfolio optimization aims to determine which of the stocks to be added to a portfolio based on the investor’s needs, changing economic and market conditions. In order to construct an efficient...

2016
Onur Genc Ozgur Kisi Mehmet Ardiclioglu

In this study, artificial neural networks (ANNs) and adaptive neuro-fuzzy inference system (ANFIS) were used to estimate shear stress distribution in streams. The methods were applied to the 145 field data gauged from four different sites on the Sarimsakli and Sosun streams in Turkey. The accuracy of the applied models was compared with the multiple-linear regression (MLR). The results showed t...

2012
A. Venkatasami Dr. P. Latha K. Kasirajan

Transformer fault diagnosis is an interesting subject for plant operators due to its criticality in power systems. There are several international standards available to interpret power transformer faults based on dissolved gas analysis. In certain cases these standards are not able to provide correct diagnosis. There are several soft computing techniques available for modelling transformer fau...

  این مطالعه برای پیش‌بینی بازدهی شاخص قیمت و بازده نقدی بورس اوراق بهادار تهران، آشوب را تحلیل و پیش‌بینی‌پذیری را بررسی کرده و نیز عملکرد انواع مدل ‌ های شبکۀ عصبی را با کمک داده‌های تجزیه‌شده با روش موجک ارزیابی کرده است. به‌همین منظور، از داده ‌ های سری‌زمانی روزانه و سری بازدهی شاخص قیمت و بازده نقدی بورس طی دورۀ زمانی ۵ فروردین ‌۱۳۸۸ تا ۱۸ اردیبهشت ۱۳۹۱ استفاده شده است. براساس نتایج این م...

2009
Samad Ahadian Yoshiyuki Kawazoe

Modeling of water flow in carbon nanotubes is still a challenge for the classic models of fluid dynamics. In this investigation, an adaptive-network-based fuzzy inference system (ANFIS) is presented to solve this problem. The proposed ANFIS approach can construct an input-output mapping based on both human knowledge in the form of fuzzy if-then rules and stipulated input-output data pairs. Good...

2015
Ayush Agrawal

This paper presents a comprehensive study of ANFIS+ARIMA+IT2FLS models for forecasting the weather of Raipur, Chhattisgarh, India. For developing the models, ten year data (2000-2009) comprising daily average temperature (dry-wet), air pressure, and wind-speed etc. have been used. Adaptive Network Based Fuzzy Inference System (ANFIS) and Auto Regressive Moving Average (ARIMA) models based on In...

Journal: :Expert Syst. Appl. 2009
Ali Azadeh Morteza Saberi Anahita Gitiforouz Zahra Saberi

This paper presents a hybrid adaptive network based fuzzy inference system (ANFIS), computer simulation and time series algorithm to estimate and predict electricity consumption estimation. The difficulty with electricity consumption estimation modeling approach such as time series is the reason for proposing the hybrid approach of this study. The algorithm is ideal for uncertain, ambiguous and...

ژورنال: :پژوهشنامه مدیریت حوزه آبخیز 0
محمد زارع علیرضا مقدم نیا صادق تالی خشک حسین سلمانی

در این مطالعه از مدل نروفازی برای تهیه نقشه حساسیت خطر لغزش حوزه آبخیز واز در محیط سیستم اطلاعات جغرافیایی (gis) استفاده گردید. موقعیت لغزش­های منطقه از طریق پایش میدانی و عکس­های هوایی مشخص گردید. در مرحله بعد عوامل موثر در بروز زمین لغزش نظیر ارتفاع، سنگ­شناسی، شیب، جهت، فاصله از رودخانه، فاصله از جاده، فاصله از گسل، بارندگی و کاربری اراضی رقومی گردید. سپس مناطق حساس به زمین لغزش با استفاده ا...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید