نتایج جستجو برای: شبکه som
تعداد نتایج: 44168 فیلتر نتایج به سال:
Clustering algorithms generally suffer from some well-known problems for which the Self Organizing Maps (SOM) algorithms are adept at handling. While there are many variants of the SOM algorithm, software programmes that implement the SOM algorithms have tended to give varying results even when tested on the same data sets. This can have serious implications when the goal of the clustering is n...
This paper presents a novel retrieval method for effective search of palmprints based on Principal Component Analysis (PCA) and Self-Organizing Feature Map (SOM). To reduce search space and speed up the query processing, an integration of PCA and SOM is proposed, where the coefficients obtained by PCA for global feature representation is considered as input features of SOM. The trained SOM can ...
In this study, we describe the use of the self-organizing map (SOM) as a metamodeling technique to design a parallel text data exploration system. Firstly, the large textual collections are divided into various small data subsets. Based on the different subsets, different unitary SOM models, i.e., base models, are then trained for word clustering map. In this phase, different SOM models are imp...
The Self-Organizing Map (SOM) is a powerful tool in the exploratory phase of data mining. However, due to the dimensional conflict, the neighborhood preservation cannot always lead to perfect topology preservation. In this paper, we establish an Expanding SOM (ESOM) to detect and preserve better topology correspondence between the two spaces. Our experiment results demonstrate that the ESOM con...
This paper presents a new mutation operator called the Sobol Mutation (SOM) operator for enhancing the performance of Quantum Particle Swarm Optimization (QPSO) algorithm. The SOM operator unlike most of its contemporary mutation operators do not use the random probability distribution for perturbing the swarm population, but uses a quasi random Sobol sequence to find new solution vectors in th...
The self-organizing map (SOM) is a method that represents statistical data sets in an ordered fashion, as a natural groundwork on which the distributions of the individual indicators in the set can be displayed and analyzed. As a case study that instructs how to use the SOM to compare states of economic systems, the standard of living of different countries is analyzed using the SOM. Based on a...
Although the SOM algorithm has been widely used with vectorial data, its principle is not restricted to metric vector spaces. Indeed, any set of items for which a similarity or pseudo-distance measure is available could be mapped onto the SOM grid in an ordered fashion. As Kohonen and Somervuo (2002) pointed out, the optimal speed of shrinking of the neighbourhood range function on nonvectorial...
The Self-Organizing Map (SOM ) is a popular unsupervised neural network able to provide effective clustering and data visualization for data represented in multidimensional input spaces. In this paper we describe Fast Learning SOM (FLSOM ) which adopts a learning algorithm that improves the performance of the standard SOM with respect to the convergence time in the training phase. We show that ...
One of the attractive features of Self-Organising Maps (SOM) is the so-called “topological preservation property”: observations that are close to each other in the input space (at least locally) remain close to each other in the SOM. In this work, we propose the use of a bootstrap scheme to construct a statistical significance test of the observed proximity among individuals in the SOM. While c...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید