نتایج جستجو برای: شبکه عصبی پروسپترون چند لایه
تعداد نتایج: 128766 فیلتر نتایج به سال:
هدف پژوهش حاضر مقایسه پیشبینی شاخص سهام با استفاده از مدلهای ترکیبی مبتنی بر الگوریتم ژنتیک و جستجوی هارمونی با شبکه عصبی معمولی است. مربوطترین نماگرهای تکنیکی به عنوان متغیرهای ورودی و تعداد بهینه نرون لایه پنهان شبکه عصبی مصنوعی با استفاده از الگوریتمهای فراابتکاری ژنتیک و جستجوی هارمونی تعیین شده است. مقادیر روزانه شاخص قیمت بورس اوراق بهادار تهران از تاریخ 1/10/91 الی 30/9/94 جهت پیشبی...
پیش بینی سود هر سهم و ارزیابی سودمندی سودهای گذشته برای پیش¬بینی، از دیرباز مورد توجه پژوهشگران بوده و بدین منظورازروش¬هاومدل¬های متفاوت به منظورپیش¬بینی سودهای آتی شرکت¬هااستفاده شده است. در این راستا، در پژوهش حاضر، مدل¬های سری زمانی توضیحی جمعی میانگین متحرک ARIMAوشبکه¬های عصبی مصنوعی از نوع پرسپترون چند لایه (MLP) مورداستفاده قرارگرفتند وپیش بینی¬هابرای سودهای فصلی شرکتهای پذیرفته شده درباز...
آزمایش آنالیز طیفی امواج سطحی SASW روش صحرایی غیر مخرب برای شناسایی و تعیین پروفیل سختی لایههای خاک و سیستمهای چند لایهای مشابه میباشد. نتایج حاصل از انجام آزمایش SASW در قالب محنی پراکندگی تجربی قابل ارائه میباشد. منحنی پراکندگی بدست آمده از آزمایش به وسیله روشهای برگردان برای تعیین پروفیل خاک در محل بکار برده میشود. در این مقاله از مدلهای شبکه عصبی برای تخمین و تعیین پروفیل خاک ...
آسکوربات کلسیم نمک بافر اسید آسکوربیک حاوی کلسیم می باشد و در حفظ کیفیت و کاهش ضایعات محصولات کشاورزی در پس از برداشت مؤثر می باشد. در این مطالعه از مدل سازی شبکه عصبی مصنوعی جهت پیش بینی اثر آسکوربات کلسیم بر زمان ماندگاری قارچ دکمه ای استفاده گردید. پس از اعمال تیمار آسکوربات کلسیم در سه سطح 0، 4/0 و 8/0 درصد، قارچ ها در دمای 5/0±1 درجه سلسیوس و رطوبت نسبی 90% نگه داری و سپس صفات کیفی طی روزه...
در مقاله حاضر قابلیت مدل خود همبسته شبکه عصبی مصنوعی دینامیک برای پیشبینی جریان ماهانه ورودی مخزن سد دز ارزیابی شده و نتایج به دست آمده با مدل خودهمبسته شبکه عصبی مصنوعی استاتیک مقایسه شده است. در تحقیقات قبل مقایسه مدل های استاتیک و دینامیک در شبکه های عصبی مصنوعی صورت نگرفته است. ضمناً تحقیق حاضر از حیث خودهمبستگی مدل شبکه عصبی مصنوعی، دارای نوآوری می باشد. در این تحقیق آبدهی های ماهانه بین ...
در شبکه های عصبی مصنوعی (ann) روش های موجود آموزش و واسنجی عصبی بر اساس ساختار پرسپترون چندلایه ای می باشد، لیکن این روش ها دارای مشکلات ناشی از عدم همگرایی در روش های یادگیری، عدم ثبات اوزان شبکه در شرایطی که طیف داده های ورودی دارای انحراف معیار بزرگ بوده و بالاخره نیاز به داده و اطلاعات فراوان جهت آموزش شبکه می باشند. برای غلبه بر مشکلات فوق در این تحقیق روش جدید ترکیبی شبکه عصبی مصنوعی – به...
یکی از گامهای مهم در توسعه شبکه های عصبی مصنوعی طراحی معماری شبکه است که تأثیر زیادی بر عملکرد شبکه دارد. در طراحی معماری شبکه های عصبی مصنوعی، عواملی از قبیل تعداد لایه های پنهان، تعداد نرون ها در هر لایه، توابع تبدیل و الگوریتم آموزش باید تعیین شوند. محققان در طراحی معماری شبکه به طور عمده از طریق سعی و خطا عمل می کنند و یا اینکه اثر متقابل بین عوامل مختلف در طراحی معماری شبکه را در نظر نمی گ...
برای طرح و مدیریت روسازی، پیش بینی عمر خستگی مخلوطهای آسفالتی، مورد نیاز بوده و مورد توجه پژوهشگران مختلف قرارگرفته است. این تحقیق به دنبال بکارگیری تکنیک شبک ههای عصبی ) ANN ( برای پیش بینی عمر خستگی مخلوطهای آسفالتی است. به دلیل محدودیت و عدم دسترسی به داد ههای جامع آزمایشگاهی مربوط به عمر خستگی در داخل کشور، در این تحقیق از داد ههای آزمایشگاهی ایالت کانزاس آمریکا برای مدل سازی استفاده شده اس...
گسترش سریع استفاده از شبکه های عصبی مصنوعی ( ann) به عنوان مدل تجربی و کارآمد در علوم مختلف از جمله هواشناسی و اقلیم شناسی نشان دهنده ضرورت ارزش بالای مطالعه این مدل هاست. پیش بینی بارش برای اهداف مختلفی نظیر برآورد سیلاب، خشکسالی، مدیریت حوضه آبریز، کشاورزی و ... دارای اهمیت بسیاری است. هدف این مقاله پیش بینی بارش ماهانه با استفاده از شبکه های عصبی مصنوعی در شهر تهران می باشد. در این تحقیق از ...
هدف از این تحقیق بررسی توانایی سناریوهای مختلف شبکه های عصبی شامل شبکه های عصبی پرسپترون چند لایه(mlp) وشبکه های عصبی با پایه شعاعی(rbf) در مدل سازی فرآیند بارش- رواناب در مقیاس روزانه، که بطور عمده برای درک کنترل و مدیریت منابع آب مورد نیاز هستند، می باشد. تبدیل بارش- رواناب به علت تغییرات شدید زمانی و مکانی آن،یکی از پیچیده ترین مسائل در طبیعت می باشند، و وجود روابط قوی و غیرخطی میان متغیرها ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید