نتایج جستجو برای: خوشهبندی k means
تعداد نتایج: 702412 فیلتر نتایج به سال:
Due to its simplicity and versatility, k-means remains popular since it was proposed three decades ago. Since then, continuous efforts have been taken to enhance its performance. Unfortunately, a good trade-off between quality and efficiency is hardly reached. In this paper, a novel k-means variant is presented. Different from most of k-means variants, the clustering procedure is explicitly dri...
K-means is a popular non-hierarchical method for clustering large datasets. The time requirements increase linearly with the size of the data set which make it particulary suited for extremely large datasets such as those found in digital libraries. The method was developed by MacQueen [4] in 1967. In our project we take a uniprocessor k-means algorithm and implement a parallel k-means algorith...
In many applications it is desirable to cluster high dimensional data along various subspaces, which we refer to as projective clustering. We propose a new objective function for projective clustering, taking into account the inherent trade-off between the dimension of a subspace and the induced clustering error. We then present an extension of the -means clustering algorithm for projective clu...
this paper compares clusters of aligned persian and english texts obtained from k-means method. text clustering has many applications in various fields of natural language processing. so far, much english documents clustering research has been accomplished. now this question arises, are the results of them extendable to other languages? since the goal of document clustering is grouping of docum...
When clustering a dataset, the right number k of clusters to use is often not obvious, and choosing k automatically is a hard algorithmic problem. In this paper we present an improved algorithm for learning k while clustering. The G-means algorithm is based on a statistical test for the hypothesis that a subset of data follows a Gaussian distribution. G-means runs k-means with increasing k in a...
The K-means algorithm is a popular data-clustering algorithm. However, one of its drawbacks is the requirement for the number of clusters, K, to be specified before the algorithm is applied. This paper first reviews existing methods for selecting the number of clusters for the algorithm. Factors that affect this selection are then discussed and a new measure to assist the selection is proposed....
Clustering of objects is an important area of research and application in variety of fields. In this paper we present a good technique for data clustering and application of this Technique for data clustering in a closed area. We compare this method with K-nearest neighbor and K-means.
با توجه به اهمیت و کاربرد سیستم طبقهبندی امتیاز تودهسنگ در مهندسی سنگ، هدف از این مقاله تصحیح کلاسهای نهایی این سیستم طبقهبندی با استفاده از الگوریتمهای خوشهبندی k-means و fuzzy c-means (FCM) است. در سیستم طبقهبندی امتیاز تودهسنگ دادهها توسط یک سری از اطلاعات اولیه بر مبنای نظریات و قضاوتهای تجربی طبقهبندی میشوند ولی با کاربرد الگوریتمهای خوشهبندی در این سیستم طبقهبندی، کلاس...
Penyakit jantung adalah kondisi dimana sebagai organ vital manusia mengalami gangguan dan tidak berfungsi dengan baik merupakan penyakit yang paling mematikan di dunia serta menjadi penyebab utama kematian secara global, total sekitar 17,9 juta jiwa per tahunnya. Pada penelitian ini dilakukan pengelompokkan data pasien terdiagnosis untuk melihat karakteristik persamaan dari setiap pasien. Datas...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید