نتایج جستجو برای: خودریختی نرمال
تعداد نتایج: 12846 فیلتر نتایج به سال:
زیرگروه خودجابجاگر یک گروه ریشه در نظریه گروههای متناهی دارد و حالت خاص آن زیرگروه مشتق است. مفهوم زیرگروه خودجابجاگر به صورت اساسی برای اولین بار در مقاله ای به وسیله پیتر هگارتی در سال ???? معرفی و مورد بررسی قرار گرفت. بعلاوه، هگارتی با معرفی زیرگروهی مشخصه از یک گروه، به نام مرکز مطلق گروه، یکی از نتایج معروف شور در سال ???? را تعمیم داد. تا کنون پژوهشهای متعددی در این زمینه انجام گرفته اس...
مقدمه : kub عکس ساده شکم پس از آمادگی است. روش استاندارد ایجاد آمادگی جهت پاک سازی دستگاه گوارش برای مطالعات تشخیصی معمولاً شامل محدودیت رژیم غذایی واستفاده از مواد مسهل مانند روغن کرچک است اما این روش وقت گیر بوده و اغلب برای بیماران ناخوشایند است و معمولاً نیز ناموفق می باشد. در این مطالعه ما میزان آمادگی ایجاد شده توسط نرمال سالین را به عنوان روش جایگزین پاک سازی روده ها با آمادگی ایجاد شده تو...
مسئله ای از ژاکوبسن می گوید: اگر r یک حلقه ژاکوبسن باشد، آیا s=r[y:t. ]، نیز چنین است؟ یعنی آیا هر ایده آل اول آن اشتراکی از ایده آلهای ابتدایی است؟ هدف اصلی پایان نامه عبارتست از اینکه نشان دهیم پاسخ سئوال فوق درمورد زیر صحیح می باشد: وقتی که r یک حلقه نوتری تعویض پذیر و t یک خودریختی r است.در این پایان نامه با استفاده از مقالات مربوط به پایان نامه به مطالعه اشتراک ایده آ...
فرض کنیم x و y فضاهای باناخ ابربازتابی و (b(x و (b(y به ترتیب جبرهای باناخ عملگرهای خطی و کراندار روی x و y باشند. اگر (p? b(x) -> b(y یک نگاشت خطی و دوسویی تقریباً حافظ طیف باشد، در این صورت p یک عملگر تقریباً ضربی یا یک عملگر تقریباً پادضربی است. علاوه براین، اگر y = x یک فضای هیلبرت تفکیک پذیر باشد، چنین نگاشتی اختلال کوچکی از یک خودریختی یا یک پادخودریختی خواهد شد. همچنین، پیوستگی خودکار چنین ...
فرض کنید g یک گروه باشد. در این گراف توانی وابسته به گروه g که بال نماد g نشان داده می شود، گرافی است که رأس های آن عناصر گروه p(g) مجاورند هرگاه یکی از آن ها توانی از دیگری باشد. در این رساله گراف های توانی مسطح و کامل گروه ها را طبقه بندی کرده و عدد خوشه ای و رنگی آن ها را محاسبه می کنیم. هم چنین، کران های بالا و پایینی برای عدد استقلالی این گراف ها ارائه خواهیم کرد و نشان خواهیم داد که گراف...
فرض کنید rحلقه 2-پیچشی آزاد شبه اول وq_s حلقه خارج قسمتیهای متقارن باشد و خودریختی های ?و? را داشته باشیم ،اگر نگاشت t:r?r یک نگاشت جمعی باشد بطوریکه (t(xyx)=t(x)?(y)?(y)- ?(x)t(y)?(x)+ ?(x)?(y)t(x آنگاه t به شکل زیر میباشد (( 2t(x)=q?(x)+?(x)q (x?r ,q?q_(s
این پایان نامه در چهار فصل تنظیم شده است: فصل اول، برخی مفاهیم و قضایا در نظریه گروهها.فصل دوم ، کیلی گرافها. فصل سوم ساختن کیلی گرافهای نرمال یال انتقالی از گرافهای خارج قسمتی. فصل چهارم، گرافهای دوری نرمال یال انتقالی
در این پایان نامه ابتدا با مفاهیم زیرگروه های شبه نرمال،s-شبه نرمال،s-شبه نرمال نشانده شده،c-نرمال،c-نرمال ضعیف، *c-نرمال،*c-نرمال ضعیف آشنا می شویم. همچنین با ذکر مثال هایی ارتباط بین این زیرگروه ها را مشاهده می کنیم. در ادامه مفهوم گروه های p-پوچ توان را یادآوری می کنیم و در پایان قضیه های اصلی پایان نامه را ارائه می دهیم.
تعمیمی یک مدی یا دومدی از توزیع تی معرفی می شود. این مدل دارای انعطاف پذیری بیشتر و دامنه چولگی و برجستگی گسترده تر نسبت به سایر توزیع های چوله میباشد. در حالت خاص، تعمیمی از توزیع کوشی نیز معرفی میگردد. با گسترش توزیع نرمال-چوله-نرمال (nsn)، معرفی شده بوسیله ی گومز و همکاران (2013)، به حالت چندمتغیره، تعمیمی از توزیع چوله نرمال چندمتغیره انجام شده است. این کلاس جدید از توزیع ها برحسب شکل آمیخت...
در فصل اول مفاهیم اساسی ساختار محدب، ساختار نرمال و خاصیت نقطه ثابت را بیان می کنیم. در فصل دوم خاصیت نقطه ثابت در فضاهای باناخ به طور یکنواخت محدب، فضاهای باناخ انعکاسی با ساختار نرمال و فضاهای باناخ با ساختار نرمال یکنواخت را بررسی می کنیم. در فصل سوم خاصیت نقطه ثابت را به فضاهای متریک تعمیم داده و این خاصیت را در فضاهای متریک کراندار با ساختار محدب و فضاهای متریک با ساختار نرمال یکنواخت مورد...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید