نتایج جستجو برای: تریتون100 x

تعداد نتایج: 623167  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه یاسوج - دانشکده علوم پایه 1394

در این پایان نامه، پایداری هایرز - اولام - راسیاس معادله تابعی مکعبی ‎ f(mx‎ + ‎y)‎ + ‎f(mx‎ -‎y) = mf(x+y)‎ + ‎mf(x-y)‎ + ‎m f(x-y)‎ + ‎2(m3-m)f(x) را جاییکه m?1 عدد صح?ح مثبت است را بدست می آور?م همچنین با استفاده از روش نقطه ثابت پایداری هایرز - اولام - راسیاس را برای معادله تابعی ‎f(2x+y) = 2f(x)‎ + ‎f(y)‎ + ‎f(x+y)‎ - ‎f(x-y)‎ در فضای باناخ اثبات خواهیم کرد

Journal: :International Journal of Mathematics and Mathematical Sciences 1988

This paper is an attempt to prove the following result:Let $n>1$ be an integer and let $mathcal{R}$ be a $n!$-torsion-free ring with the identity element. Suppose that $d, delta, varepsilon$ are additive mappings satisfyingbegin{equation}d(x^n) = sum^{n}_{j=1}x^{n-j}d(x)x^{j-1}+sum^{n-1}_{j=1}sum^{j}_{i=1}x^{n-1-j}Big(delta(x)x^{j-i}varepsilon(x)+varepsilon(x)x^{j-i}delta(x)Big)x^{i-1}quadend{e...

Journal: :Journal of Nonlinear Mathematical Physics 1997

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شیراز - دانشکده علوم پایه 1392

کمپلکس [ptme(ppy)pph3]- فنیل پیریدینppy = 2 با( bix3( x= cl, br, i واکنش میدهد و محصولات cis-[ptme(x)2(ppy)pph3],3a, x=cl,3b, x= br, 3c, x= iوpt(x(ppy)pph3] 2b,x= i,2a,x=cl, بدست می آیند. برای اثبات محصول واکنش کمپلکس [ptme(ppy)pph3] با bii3 واکنش کمپلکس (pt(ii با i2 انجام شد و داده های به دست آمده از این واکنش با واکنش با bii3 در حلال مشابه مقایسه شد. این کمپلکس ها با طیف سنجی 1hnmr , 31pnmr و...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهید چمران اهواز - دانشکده ریاضی و کامپیوتر 1393

گیریم( c(x حلقه ای از توابع پیوسته با مقادیر حقیقی بر فضایt_1 و کاملا مرتب x باشد. همچنین فرض کنیم( c_k (x اید آلی از توابع با تکیه گاه فشرده باشد. ناب بودن به عنوان ( c_k (x زیر فضایی ازx_l که مجموعه ای از نقاط x با همسایگی های فشرده است را شناسایی و بررسی می کند .اثبات می کنیم که(c_k (x ناب است اگر و فقط اگرx_l=?suppf (f عضو (c_k (x . اگر( c_k (xو( c_k (y ایده ال-های ناب باشند،(c_k (x) وc_k)(...

پایان نامه :دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده علوم پایه 1392

برای هر ‎x,y ?r ِِ d،یک مشتق ژردان نامیده می شود هرگاه ‎d(x^2)=d(x)x+xd(x) ‎ برای هر ‎x? r‎ . نگاشت ‎f‎ از حلقه ی ‎r‎ به خودش جابه جایی نامیده می شود هرگاه ‎ [f(x),x]=0‎ برای هر ‎x?r. هرمشتق یک مشتق ژردان است ولی عکس این مطلب صحیح نیست. یک نتیجه ی مشهور از هرشتاین ‎بیان می کند که هر مشتق ژردان در هر حلقه ی اول با مشخصه ی مخالف ‎2‎ یک مشتق است. برسار و واکمن ‎اثبات کوتاهی برای این نتیجه ارائه ک...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید